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NOMENCLATURE

Vector potential

Function related to vertical wavenumber
o,,8

Rotation tensora.
11

Arg  !

A,B,C,D

Denotes argument of a complex quantity

f unct i ons in <-domain

Speed of propagation

Total differential operator

Fourth-order tensorL'..
'i jmn

Unit vector

Body force vector

 'reen's function in frequency domain

Green's function in time domain

H z!

rm< !

Functions of cP, !, R,S

Spectrum of pulse

Thickness of a layer

Integral

.2
Imaginary unit  i = -1!

Uenotes imaginary part of complex quantity

Bessel function of zeroth order

Bulk modulus of elasticity

Kavenumber

Matrix, also mass of a body

Density ratio  m = p /p !

Element of M



Pressure

IIcat conduction vector

Distance between source and receiver

Radial coordinate  also heat source!

Real part of a quantity

Surface, usually of a volume element

Re 

Tntegration variable along branch cut or entropy per
unit mass

Temperature

Time coordinate

u

V

1!

internal energy

Displacement vector

Volume of a given element

Velocity vector

i~1echanical work

Cartesian coordinate, or Refz}

Cartesian coordinate, or lm z}

Cartesian coordinate, or complex variable  z = x + iy}

Longitudinal wave speed

Transverse wave speed

Denotes path of' integration

Ratio of two length scales

Dirac delta function

Vroneckcr delta

Pertubation parameter

htralll tellsor



Variable in Fourier-Ressel transform domain and bulk

Ylscoslty

Gocfficient of heat conduction

Lame parameter, or wavelength

Lame parameter  Rigidity modulus!

Denotes repeated multiplication

fiass density

stress tensor

."calar potential

Frequency

1'artial di fferenti al operator

Gradient operator

Denotes scalar multiplication of two vectors

Denotes cross product of two vectors

37

Subs credits

Refers to longitudinal wave

liefers to transverse wave

Indicesi,j,k,

Denotes minimum

Denotes maximum

0,1,2,
~ ~ !> ~- lkcfers to layer

i0
Arl;ument of complex variable z z = Re !, local entropy
production or angle of incidence



SO «ND PROPA iA'1'IOV ',V A LINGUI«>

OV1'RLYING A VIS ; >ELA~]IC ««ALPSPA .'E

ALLEN H. h!A ;VUSON

I he «>r<>blem of acoustic subbottom sediment identification a»d

cia»alfie >tion is treated using an anal>tical approach. Fhc purpose of

the study i» to devclo«> expressions far the acoustic rcsponsc in

li~luid overlying a layered viscoelastic halfspacc. After a review of

related experimental results and earlier analytical studies, the funclamental

governing laws are discussed and a Iincarization is n1>plied. Lincarized

constitutive relations are developed for an elastic solid witi> super-

imposed damping  Voigt viscoelastic model! . Vector displacement field

cnuatio»s are also derived for the inviscid Fluid.

Thc vector field equations are simplified by scparnti»g thc field

into Ion«,itudina] and transverse parts and introducing scalar potential

Functions for the resulting polarizations, The response in the liq«id is

expressed as a. Green's function due to ti>e monopole point-source fir«J

excitation. '1'hen the multi-layer problem is solve 1 using ti>c  'rccn's

function formalism, integral transforms and by matching bo»ndar>

conditions at each i»terface between layers. A recurrence relation is

developed for the potentials in adjoining viscoelastic layer». This

recurrence relation is applied successively t o eliminate thc potentials



between the first and last viscoelastic layers. '%e result is suitable for

computer studies due to the application of thc recurrence relation.

Special cases of the multi-layer problem are developed and sho~n

to be consistent with earlier results. The one viscoelastic layer

 hal fspace! case is analyzed in detail for both finite and infinite depth

of the overlying liquid. The integral form is evaluated using complex

variable techniques and high-frequency far-field approximations. The

results are expressed as the sum of residue terms and branch line

integrals. The branch line integrals are expressed as asymptotic series

and the leading terms are evaluated for. the infinite liquid depth. The

result is shown to bc applicable to the near-bottom case, In addition,

a steepest descent integration is applied for moderate angles of

incidence. The resulting response is the sum of the direct and reflected

i avc «nd a refracted wave that occurs for angles of incidence beyond a

critical angle,

Application of thc results to the subbottom identification problem is

discussed. lt is shown that the compressional anti transverse wave

propagation in the subbottom can be inferred from the results for the

near-bottom infinite depth case. Additional information on the

subbottom may he obtained from the moderato  oblique! incidence model.
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I, INTRODUCTION

The extraction of mineral sediments from the continental shelf is

becoming more feasible economically due to the steady depletion of

resources o» land. I»terest i» this area has created a demand for an

inexpensive, rapid means for cl assi fying underwater sediments. Thc

purpose of the present work has been to develop understanding of the

fundamental physical processes occurring in the ocean-subbottom system.

The dynamical behavior of the system shown schematically in Figurc I

i» response to acoustical input signals is of primary interest. The

rationale of the present investigations is based on the premise that

further advances in the remote classifications of marine sediments are

depe»dent upon the development of more sophisticated and realistic

analytical models. A model consisting of a coupled acoustic  ocean!

and dynamic viscoelastic field  subbottom! is developed. Classificat.ion

of sediments can then be accomplished in terms of the viscoelastic

parameters of the subbottom. Enough progress has been made using this

type of approach to justify further development.

A, Discussion of Results of Previous Investigators

Considerable experimental work has been done to cl assi.fy or identify

marine sediments. The most conclusive work to date is that of Breslau

and !lamilton. Breslau [1] developed a relationship between subbottom

reflcctivity and the sediment porosity. 1lamilton's results of extensive

work do»e on the co»ti»e»tal terrace and in the deep ocean are summarized

in Reference fll]. Ile measured or computed the elastic properties of

several types of. marine sediments. His results for the continental
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terrace  s!le 1 f and slope! are prese»ted in '1 a!i! c 1. Several general

observations can bc made from !lamilton's res«lts. First, onc sees that

the compressional wave speed with the s«bbottom is slightly !iig!>cr than

thc speed of so«nd in t!tc overlying water. Sccondl>, the shear wave

speed in the sediment is considerably slower than thc water's speed of

so«n,l. In addi t ion, thc sediment dc»si t y varies From about 1. 5 to 2.0

times thc water density.

iiumerous investigations have been performed to model and measure

thc dissipative or damping properties of marine sc<limcnts. I:rizek and

Franklin [21] measured thc energy dissipation in a soft clay. They found

t!~c energy dissipation to be independent of freq»ency from 0.1 to 30 !!z.

!'lizikos [30], [31] fo»nd that, For marine sands, the sliding contact

between < rains induced an amplitude and frequency independent phase lag

between stress and strain, Ot!icr investigations have been conducted:

for example, wc cite the work of liampton [12] and h'ood and Weston [57].

Hot!~ obtained empirical relations for t!ie attenuation or energy

dissipation ot sound in marine sediments. In any case, thc damping

mechanisms in marine sediments are not well »nderstood and no universally

accepted model for the damping exists valid over the frequency ~ange of

interest. Thc experiments general ly conclude that marine sediments may

be modeled as an clastic solid with small superimposed damping.

The experimental work on marine sediments has relied. on relatively

simple models to interpret the data. Breslau [1]»sed a plane-wave

reflection coefficient model in conjuction with ray theory. In

Hami!ton's work [11] the compressional wave speed in the sediment was

measured directly using probes. The shear wave velocities were computed
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from Stone ley wave sl!eed measuremcnts using the close rc. lation between

the two waves [2!,

The models used do»ot take i»to «ccount several important effects:

tl!c fi] st is the cxi stance ol s»hlnycrs in the sediment  shnw» in

l-i!!ure l! and thc scen»d is dampi«g. !!ther effects st!cl! as non»»i fnrmity

of the sediment interfaces and sediment inhomogenictics are obviously not

taken into account, The present work develops a more general acoustical-

elastodynamic model with damping that takes into account thc multiple

layering. In addition, the threc-dimensional nature of the problem is

explicit ly taken into account by modeling the acoustic stimulus as a

point source in the liquid layer.

The analytical work developed here is an extension of seismological

and geophysical investigations on the analysis of earth tremors in thc

deep ocean and response to «ndcrwatcr cxplosions. i'.wing, .Jardetsky and

press [5] present i» a comprehensive s»rvey the principal results of

a«nlytical st»dies in this area up to about 1957. Thc principal

differences between seismological-geophysical modeling and acoustical

subbottom identification arise due to differences in thc time dependence

of the stimuli to the system and in tl!c ranges over which signals are

monitored. Geophysical work usually »ses an impulsive time dependence

representing an explosion or a natural disturbance. In addition,

distances from source to receiver are usually many times the water depth

in thc deep ocean. Un the other hand, acoustic sounding of the subbottom

in shallow water is usually done with a frequency-modulated pulse of

shoxt duration. The modulating frequencies are generally in the mid-audio

range: i.e. from 1 Kllz to 10 Kllz. The ranges are usually much shorter,

as both source and receiver are usually hung over the side of a single



survey vessel. In addition, elastic wave propagation speeds in the deep

ocean bottom differ qualitatively from those in sediments in shallow

water  see Table 2!, Nc see from the table that both the compressional

and thc shear wave in thc rock bottom arc higher than thc liquid layer's

sound velocity.

Thc relative differences in thc ph>sical parameters alter the

viewpoints of the two activities. Gcncrall> in gcoph> sical work modal

behavior is predominant <luc to the Large distances between stimulus and

receiver. In acoustic sounding, ref lcctcd waves  generally the first

return!, refracted waves and interface waves arc thc significant effects

picked up by sensors, The frequency content of seismological stimuli

arc us»all> at the low cnd of the spectrum, while thc spectrum of a

modulated acoustic signal is centered around thc modulation frequency.

lligh-frc<lucncy approximations may then hc ma<le in acoustical work. This

facilitates evaluation of integral expressions for the response»sing

asymptotic methods.

'l'hc earliest anal> tical work in the geophysical area dates back to

Raylcigh [41] and Lamb [22]. The carly work was extensile<I and generalized

by, among others, Makano [36] and l.apwood [27] ..lef fries [l7] first

applied to thc geophysical field the complex variable techniques developed

by Sommerfeld [43] For electromagnetic wave propagation problems. !lost

of the later analyticaL work  including this! has been based on Sommerfeld's

approach.

Pckeris [3S] an<I Press anil Ewing [40] investigated the response due

to a point source in a liquid layer overlying a f Lui<l and solid half-

space respectively. Both neglected the effect of branch-line integrals,



Llastodynamic leave Propagation Parameters for the
Ocean Floor  Rock!  From Fwing, et. al. I5], p, 162!

Tal>lo 2

1/ 0

Granite

Basaltic 3.0

Type of
Bottom c L/cT cT/c0 c L/c0



being primari ly interested in the mo~laI or waveguide-like part of the

response. f!onda and Nakamura �5j evaluated the branch line integrals

for the problem treated by Press and t-;wing. These integrals correspond

to refIected and refracted waves.

The transmission of elastic waves through multi-layered media has

been discussed for the plane-wave case by Thomson [53] and Haskell [I3] .

Thomson developed a matrix method that could be applied to an arbi.trary

number of layers using a recurrence relation. !laskell later removed an

unnecessary restriction appearing in Thomson's formalism and computed

group velocities for several assumed models of the earth's crust.

.Jardetzky [I6] developed expressions for thc period equation and the

response duo to a point source in an n-layered clastic halfspace.

 .Jardet zky' s treatment also appears in !<eference [6] ! .

g. Statement of thc Problem

The purpose of this investigation is to develop expressions for

the point-source acoustic response in a liquid layer overlying a layered

solid halfspace. The results are to be developed systematically from

fundamental principles. To keep the discussion as general as possible,

expressions are developed in a frequency domain. The Fourier synthesis

for specific input pulse shapes in the time domain is relatively

straightforward and does not introduce any new fundamental insight into

the problem.

T!ic solid halfspacc is assumed to consist of an arbitrary number

of paraIlel horizontal layers. Each layer is assumed to be a linear

homogeneous isotropic clastic solid with superimposed damping; e.g,, a

Voigt viscoelastic model. The frequency-domain resnonse is to be



ca! c«lated for values of physical parameters corresponding to typical

mari.ne sediments E'see Table I!. 'nxe response will be interpreted

physically and compared with thc z'csults nf earlier investigators.

C ..lieth

'I'he overall approach to the problem is analytical. Approxima-

tions and simplifications based on physical arguments are made to facilitate

discussion in cases where analytical complexity prccludes a general

treatment. An effort has been made to develop results in the most

general fortn, after which simplifications and special cases are discussed.

In Chapter II we derive the dynamic equations for viscoelastic

solid. 'Lhe equations are developed from fundamental conservation laws

and thermodynamical considerations. Suitable constitutive relations are

developed. Linearization is applied based on small disturbances from a

uniform equilibrium state.

Chapter III is devoted to the simplification of the vector field

cq«ations derived in the preceding chapter. l'he vector field equations

arc l~roken down into longitudinal and transverse part s and thc Lo»rier

transform in time is applied. Solutions to the vector field equations

are developed using scalar potential functions, f'inal ly the stress and

displacement fields arc expressed in terms of the scalar functions.

1'be field excitation in the liquid layer is developed using a point

source model,

Chapter IV the boundary valu . problem for the general n-'ayered

solid halfspace with an overlying Liquid layer is solved using a matrix

formalism combined witn a recurrencc relation. Integral transform methods

are applied, enabling the boundary conditiotxs to be evaluated as algebraic
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expressions in the transform dor!~ain. 'I'Iic rcspo»sc is expressed as a

Gree»'s function in integral form,

Special cases of the Green's function are evaluated in Chapters V

and VI. The homogeneous solid halfspace with overlying liquid layer is

treated in Chapter V. Chapter VI is concerned with the liquid halfspace

over a homogeneous solid halfspace. In both chapters approximate

expressions for the frequency domain Green's functions are obtained using

asymptotic techniques.

Finally, in Chapter VII the results are summarized and compared with

previous results. llew results are discussed and interpreted physically

where possible.



The dynamic field equations are derived for waves propagating in

elastic and damped elastic media. The usual conservation laws are

written and linearized. Suitable constitutive relations are developed

for small disturbances from an equi librium state. Finally, the dynamic

field equations are developed by combining the linearized conservation

laws with thi co»stitutive relations.

'Auch of tho discussion and development in this chapter uses the

Cartesian tensor notation for convenience. Later, a curvilinear coor-

dinate system is introduced due to symmetries existing in the field.

The Cartesian tensor notation is used in the development of the field

equations due to the relative ease of computation using this represen-

tation. Final results are later converted to an invariant notation for

use in the orthogonal curvilinear coordinate system.

A. Deformation Anal sis

+ + -+ +
u x,t! = r'[X x!,t]- X x!, �, l!

where X maps the particle into the Fuclidean 3-space in the undeformed

configuration, and r' is the position of the same particle after the

'6'e expand r' spatially as follows:field has undergone a deformation,

li» introduce a displacement vector for a continuum as u = u x!.

That is, the displacement vector is a field quantity defined throughout

the liuclidean 3-space x. l$e define the displacement as the distance a

material point in space moves from some original undeformed configuration



1 '7

where the differentiation is perfor!!!ed for a fixed particle and

dx. = x. - X.

Substituting eq. �.2! into {2. 1} gives tor the deformation

u. x,t!
1

dx. +
3

X
� ~}

For small displacements one may also write a chain rule as follows:
3u.

u. =  ~!dx. +
1 dX.

� 4}

3u. 3r'.
1 1

3x. 3x.

One may introduce the infinitesimal strain tensor <.. by taking the
1j

symmetric part of the deformation gradient

3u. 3u.
= � {~+ }

2 3x, 3x,
13 1

�. 5!

ln addition, the velocity v may be introduced by taking the material

time derivative of the displacement

+ d + +
v = � U = u

dt
�.  !!

Here the material or total time derivative is interpreted in Cartesian

notation as

+v-�{} = � +vd{ } 3{ ! 3  }
dt 3t 1 3x. {2. 7!

A velocity gradient may be introduced as

3Y.
1

3x.
3

where the quantity �u. /3x.! is the deformation gradient, a second-order
i j

tensor. 4'e may write the deformation gradient as follows from eqs. �.4}

and {2. %!



Ne denote the rate of strain tensor c .. as the symmetric part of the
1!

ve loci ty gradi ent

3v ~

ij 2 3x. 3x.
3 x

We note that for infinitesimal strains, the rate of strain tensor

is identical to the time derivative of the strain tensor.

Latex in the chapter, we take the elements of the strain tensor to

be infinitesimal as the basis for the linearization of the governing

equations. This implies for wave type propagation that the deformations

are small. That is, in wave propagation, the disturbance is limited to

a small region in space  the length of the wave pulse}. Uniform distur-

bances like thermal expansion, which imply large large deformations, are

ruled out. The displacement u may be taken as small relative to a char-

acteristic length scale in the field, such as the length of the propaga-

ting pulse. The elements of the rate of strain tensor are also taken as

small, which implies that the field velocity is small relative to some

velocity scale such as a speed of sound propagation in the medium.

E. Conservation Laws

The medium or continuum of interest is governed by four conservation

laws. We restrict the medium to be one in which only mechanical and thermo-

dynamic effects are significant. In addition, we rule out the possibility

of the medium's sustaining either a body couple or a couple-stress. In this

case, the governing laws are the conservation of mass, linear momentum,

angular momentum and energy. The conservation of mass may he written as

� + 3. pv.! = 0,3p
3t i i



or in vector notation

� + V~ pv! = 0>Bp
3t

where p is the mass density. The conservation of linear momentum implies

that

d
0-- V, - B.Q.. = pf.
'dt j i ij

�. 10!

where a.. is the stress tensor and f. is the body force per unit mass.
lj

equation �.10! is also referred to as the equatio~ of motion.

The conservation of angular momentum simply requires that the stress

tensor be symmetric, or

�.11!G.. = Q..
ij ji

in the absence of body couples and couple stresses. This implies that

only six independent elements oF the stress tensor exist.

The last conservation law may be written as

plJ - pr + 3.q, � a..c., = 0,
i i ij ij

�. 12!

where U is the specific internal energy, r is the heat supply per unit mass

and q. is the heat flux  efflux! vector. Fquation �,12! is the energy
l

balmice statement.

In ad.lition to the four conservation laws, a generalization of the

second law of thermodynamics may be introduced. The second law governs

the local growth of entropy for elements of mass moving with the medium.

We use a treatment based on Sommerfeld I44j, except that we consider the

more general case where motion of the medium and mechanical work effects

are taken into account.

One starts by writing the energy balance statement for a reversible

process as follows:



where dU  the change in internal e»ergy! is a perfect differential, 5q i»

the cliange in heat energy and 5K is the increment of work done. All terms

are per unit mass, and the "system" is an e!ement oF mass moving with the

medium. One introduces entropy by writing the heat added as

hq = Tds, �. 14!

where T is the absolute temperature and s is the entropy per unit mass.

One may write the mechanical work term due to internal. stresses as

hw = �  a..!-1 p ij R ij, �. 
!

where  o..! is the component of stress associated with a reversible process.
R

In general, the stress may be written

a, . =  a.,! a.. ',
ij ij R ij

� !C!

where o..' is the component of stress due to dissipation or irreversible
ij

processes. Substituting eqs. �,14! and �.15! into �.�! gives

AU = pTds +  a, .!�de...ij R ij.
�. 17!

OU = pTS +  a..! c.,
ij R ij

�. 17a!

One obtains the rate of production of entropy by rearranging eq. �.17a! as

Fo}lows:

�. !S!

One applies the expression for the internal energy rate from eq. �.12! and

eq. �.16! to the entropy production relation to obtain:

�. 19!

The heat conduction term may be written as two terms, giving for

cq. �. 19!:

Introducing material time rate derivatives for the differentials in eq. �.17!

yie lds



 Z. 19a!

To interpret eq. �.19a!, we consider a reversible process, where grad T = 0

and a'., = 0, e.g. no temperature gradient or mechanical dissipation. ln thi.s
ij

case, eq. �.19a! reduces to

ps + div  ~!
T T

�. 19b!

sdm + da = �.20!

V A V

where dm = pdV and n is a unit outward normal vector from the element of

surface area da. One notes that eq. �. 20! is a statement of the conserva-

tion of entropy. The first term on the left-hand side is the time rate of

change of entropy in the mass element, the second is the efflux of. entropy

through the boundary A and the right-hand side is the entropy source term.

We recall that for a reversible process the entropy is conserved. Return-

ing to the local entropy production statement for the irreversible process

feq. �.19a!], one sees that the last two terms on the right-hand side

must represent local entropy production. Ke write 0, the local entropy

production per unit volume as

16 = - �   q. grad T! + � a.. c..
2 T 1] 1! .

�.21!

The second law of thermodynamics requires that the local entropy production

be positive for an irreversible process, or

�.22!G>o.

For a reversible process, one has

e = 0

One may integrate eq. �.19b! over a mass element with volume V and enclosing

surface area A.
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from oq. �.191} . Each term on the right-hand side of cq.   . 21! must be

positive for an irreversible process, since for a process with no mechanical

dissipation  c., = 0!,
lj

10= 0 = - �  q grad>! > 0,
T2

�.220!

and for a process with no heat flow  q = 0!, one has

1 ~
0= 0 = � a'.. c,. >0.

m T ij ij
�. 22b!

From eqs.  Z. 21! and �. 22!, we have

0+8>0
Q m

l f one applies Fourier's law of heat conduction, we may write for the

heat flux vector

q = -vgrad T, �. 23!

where K' is the coefficient of heat conduction, The entropy production due

to heat conduction becomes, from eqs. �.22a! and �.23!:

0 = �  grad T! ~ {grad T! > 0.
Q T2

�.24!

From eq. �.24! one sees that the coefficient of heat conduction must be

positive.

One may obtain a relation for o..  the dissipative part of the stress!
ij

by examining the entropy production due to the mechanical dissipative process,

e.g. eq. �. 22b!.

rate 6, one has
ij

a =E'
ij ijmn mn

{2.25!

Applying this to eQ, �.22b! gives

0 > 0

G~>0.

If one writes a linear relation between a.. and the strain
17



~ ~
8 =,� E.. r c.. >0,m 'I' ijmn mn ij

 ". 26!

a quadratic form in the strain rate tensor. I:or an isotropic medium, the

fourth-order tensor L.' . must also be isotropic  see Appendix A! . One
i jmn

notes the symmetry

E.. =E
ijmn mnij

from the quadratic form �.26!. We write for an isotropic medium
1

E = A' 6 5 + '� 5 +4 g !1 jmn ij mn ~ im jn in jm '
�. 27!

Applying eq. �. 27! to �.25! gives

0.. = X E~~ 6.. + Z4 c. ~1! ki lj lg
�. 28!

It is convenient to introduce into eq. �.28! a bulk viscosity q defined as

follows;

QT ~ QI
3

�.'9!

We write eq. �.28! in terms of the bulk viscosity as

6 i 2p' ij iR ij ij 3 ij RR,
�. 28a!

where the second term on the right-hand side is traceless. Now one may write

the strain rate tensor as the sum of a non-deviatoric and a deviatoric  trace-

l e ss! component:

ij 3 ij Kp ij 3 ij kk
�. 30!

Applying eqs. �.28a! and �. 30! to eq. �. 22b! gives

0 - Tt~ CRK! + Zy.  C, 3h Eg,a! },0m T kk, 3 i! KR,
�. 31!

Eq. �. 31! requires that
3X' + 2p'

3

and p'>0, since the mechanical entropy production is the sum of two independent

quadratic terms: one associated with dilatational motion  change in volume!

and the other with shearing-type motion.

One sees that the second law of thermodynamics as stated in cqs. �.16,



C. Linearization of Governin U uations

The type of disturbance to the medium we wish to analyze is a wave

or series of waves, Ne assume that this disturbance is relatively weak so

that nonlinear effects are negligible. The disturbance may be considered to

be limited in extent spatially. That is, the disturbance is a wave front

due to some initial concentrated impulse. Ne consider the medium to be at

rest and in an undeformed state in the absence of the disturbance, where
'+u = 0 and v = 0, The undisturbed temperature and density may be denoted as

T and 9 , respectively. In addition, the undisturbed field is assumed to

be uniform spatially, so that, if we denote the disturbance effects by a

prime, we may write

u = u' x, t! �.32!

v = v' x, t!

9 = 9 + 9  xi t!

T = To+ T' x, t!

In eq. �.32! we assumed the primed quantities are small in the

following sense:

T' << T

v « c

u' « cd,

21 and 22! req~iires that the heat conduction coefficient < and the viscosities

4 and W' be positive. In addition, the second law yields directly the con-

stitutive relation for the dissipative part of the stress tensor [eqs. �.28!

or �,28a! ! .
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where c is a speed of propagation in the medium, and Vt is a time scale

such as the wave pulse duration. The strain tensor elements and the rate

of strain tensor elements are also taken as small, or

1
~E.. jij 7t

We linearize the governing equations �.9! and �.10! by retaining only

first-order terms in the primed quantities listed in eq. �.32!. Equation

�.9! reduces to

3n' +p Vv=0.
3t 0

�. 33!

The equation of motion teq. �.10!] reduces to

3v.
p ~-3 .,=pf.

0 3t iij Oj,
�.34!

where the material time derivative reduces to a local time derivative due

to the linearization, or

3  ! d  !
3t dt

+The velocity may be written as v = � for the linearized case, converting
3t

eq. �. 18! to

2u,
p~3- a.o.. = pf,
0 2 iij Oj.

�. 34a!

The energy conservation statement [eq. �.12!] and the entropy production

equation �.19! may be linearized by replacing the density p by p and by

interpreting the time derivatives as local derivatives.

D. Constitutive E uations

We wish to relate the stress tensor o.. to the independent variables
I!

in the thermo-mechanical field. One may consider the displacement and its

time and spatial derivatives and the temperature and its derivatives as the
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independent variables. We write the stress in functional form as follows

k, k kk, Rk, ' kT' �. 35!

lk lk ' kij ij
�.35a!

The linearization [eq. �.32!] implies that the stress is only a function

of the ambient temperature T , reducing eq. �.35a! to

�, 35b!

where the time derivative reduces to a local derivative for the strain

rate.

We recall from the thermodynamic discussion that stress was broken

into a reversible part and a dissipative part [eq. �.16!]

a.. =  o.,! + a.'.
13 13 R 13.

A constitutive relation has already been obtained as a consequence of the

second law of thermodynamics for the dissipative part of the stress [eqs.

�.28 and 28a!J, All that remains is to obtain a constitutive relation

for the reversible component  a..! . Ke refer to the energy balanceR'

statement for a reversible process

dU = 6q - 6W. �. 13!

Setting the heat increment to zero and introducing eq. �.15! to eq. �.13!

gives

dU =-dpi = �  o..! d c..
1

p ij R ij �,36!

Linearizing this by writing p = p gives
0

�. 37!P dU = +  a..!R dc..
0 13 R 13

One may eliminate the displacement, velocity and the skew-symmetric parts

of the displacement and velocity gradients from the functional form by

ruling out dependence of the stress an the rigid-body motion of the medium.

This simplifies eq. �.35! to the following:
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One sees that the left-hand side of eq. �.37! is the strain or defor-

mation energy stored per unit volume, and dU must be a perfect differential

for a reversible process. If the right-hand side of cq. �.37! is to be a

ncrfect differential, one may write tiie stress as a linear function of the

strain

 ct..! = I .. Eij R i jmn mn.

Applying this relation to eq. �. 37! gives

PdU=E.. < d<..
o ijmn mn ij

Formally integrating eq. �.39! gives

�. 38!

�.39!

P U = ~ E
l.

0 2 l!mn mn zj~
�. 40!

a quadratic in the strain tensor. The integration constant U is set to0

zero for zero strain. The quadratic form of eq. �.40! implies the

following symmet ry:

I.'... = L'ijmn mnij .

We are interested in an isotropic medium, so we may write in a manner

analogous to eq, �.27! the following

E,. = X6,. 5 + p�. 6. + 6, 6. !,ijmn ij mn " im jn in jm '

where X and p are Lame constants. We substitute this result into

eq. �. 38!, giving

�. 4l!

 a..! R � ~c.RR 6.. + 2R RR lj
�. 42!

For the isotropic medium, eq. �.40! for the internal energy due to defor-

mation becomes:

p U = 2 [A <IIII! + 2P < !1 2 2
o 2 IIX lj

�. 43!

One notes from eq. �.37! that the reversible part of the stress is related

to a thermodynamic derivative as follows:
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One may obtain the linearized equations of motion for the

viscoelastic solid, the elastic solid or the inviscid fluid by

substituting the appropriate constitutive relation into the

momentum conservation equation �, 31a!. 1'or the viscoelastic solid,

we use the constitutive equation �.45!, giving

2
p 3 u. - [ X + u!+ X' u'� ]aa u - [p ~ p a ]aau. = p f.0 t i t i t j j i o i

�. 48!!

or, in vector notation
2+ + 2+~ > u � [ ~ + u3+ ~' + v'!~ ]~ ~'u! � 4 + u'> !~ u =o ~.o t t t o

�. 48a!

2Now 7 operating upon a vector is not an invariant vector form [44]

Instead, it must be interpreted as an operator of the form:

v  ! =vv- ! -v v  !!.2 �. 49!

Using this identity allows us to express eq, �.48! in an invariant

f orm:

7Wo03 u - [ K+2@! +  X' + 2u'� ]7 V.u! + [p+1>'3 ]7x 'Uxu! = o f .0 t t 't
�. 50!

The equation of motion for the linear isotropic elastic solid is

obtained as a special case of eq, �.50! by setting the damping terms

to zero, or

0

and

u' =0

Applying the constitutive relation for the inviscid liquid [eq. �.47!]

to the linearized equation of motion �.34a! gives:
2

o~+ Up =Qp 3 u
Pt - o

�. 51!

�. 52!

One may manipulate eq. �.51! into the acoustic wave equation as follows.

The pressure p is written as a function of the density and entropy

 e.g,, the thermo-mechanical equation of state!;



We expand eq. �.52! about the ambient state p,o,s as follows:0 o o

3pp=p +  ~! s-s!+   ! c-p!+...
o s o 3p o

�.52a!

From this expansion and eq. �.32! one may express the pressure fluctuation

as

r ' =  p-! " +  p! o' +d a �. 53!

For an adiabatic  and isentropic! process, we write

�. 53a!pl   ! ot
s

The adiabatic sound velocity c is defined in terms of the thermo-
0

dynamic derivative as follows:

c =  ~!2

�0
�.54!

Applying eqs, �.54! and �.53a! to eq. �.51! gives
2poa u ' 'n'7p' = pnf

0 t
�. 55!

Equation �.55! may be written in a wave operator form after applying the

linearized equation of continuity

3p'+p'7 ~ �u! =0
0 t

�. 33!

Taking the divergence of eq. �.55! gives

�'u! + c V p' = p 7-f2 2 2

0 t
�, 56!

The divergence of u is, from eq. �.33!
1~'u = - � p'.
,J

0

�, 57!

Equation �.57! is a scalar inhomogeneous wave equation in p', the density

fluctuation. This is the classical result of theoretical acoustics [24],

[34]. We see here how the wave operator is developed from a thermodynamic
state equation for the pressure and from the linearization process,

We eliminate Viu from eq.

p 2Pp' - � ~!
c0 Bt2 2

�.56!, giving

2

0



II I. SlliPLIFICAT!ON OF TiiE VECTOR FII',Li! EAUAT!ONS

In the previous chapter, lineari "ed vector field equations

»ere developed for the solid medi»m �.50! and for the inviscid

fluid �.51!. Thc field equations are simplified in this chapter

«sing techniq«es dcv. loped by iianscn  a discussion of these appears

in llorsc and Feshbach [32]! for electromagnetic wave propagation

problems. Thc application of these techniques to»ave propagation

in linearized solids is due to A. Yildiz [;~8] . After simplifying

the field equations for the solid to scalar iiclmholtz equations,

a Green's function formalism is introduced to model the acoustic

field  the linearized inviscid fluid! due to the monopole type

of excitation.

A, The Elastic Solid

We write the field equation for the clastic solid from

cq. �. 50! as

2
p 3 u + ii[Vx Vxu!] -  X+"p!V V.u! = p

o t 0

[o a  X 2i !V ]V u = o V.f,
2 2

0 t 0
� la!

where the second term in eq. �.1! drops out because V Vx  ! = 0.

We manipulate eq. �.la! into the form

2 1 2 ~ . 1
[V - � d ] V.u = - �  V.f!

2 t 2
cL cL

�.lb!

whe re

This is in an invariant form, so it applies to any orthogonal curvi-

linear or Cartesian coordinate system. Taking the divergence of

eq, �.1! gives
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2 K+ !icL =, and cL is the longitudinal sound velocity.
0

1<e note that since the divergence of a vector is a scalar, eq. �,1b!

is a scalar inhomogeneous wave equation.

Taking the curl of eq. �. 1! gi vcs

2 ~[p0d + uVxVx]  Vxu! = o�'Vxf, � 2!

where we have used the result curl grad   ! = 0. One writes eq. �,2!

in the fol lowing form:

[VxVx + � � 3 ]  Vxu! = �  VxY!,1 2 ~ 1

cT cT
�. 2a!

2~here c, = p/p0, and cT is the transverse velocity.

Recalling cq. �.10! one notes that cq. �.2a! can be written as

a vector wave equation

�.2b!

It is convenient at this point to decompose the displacement

vector and the body force vector into longitudinal and transverse

parts as follows:

u = U + u,,
L T

�. 3!

where the subscript L refers to the longitudinal component and T to

the transverse. Ãe set

V 4 = 0
T

V.u = 0,

Vxu 0, Vxf�= 0 �.4!

2 1 2 +
[V - � ~ 3 ]  Vxu!

cT

1
 Vxf!

2
CT



The longitudinal field is then defined as the curl-less component

and the transverse as the divergence-less part, Equations �. Ih! and

�.2b! may be written

[V � � 3 ] V'u ! = � �  V f !
2 1 2 ~ 1 +

2 t L 2 L
cL cL

�.5!

1 2 ~ 1
[VxVx + � 3 ]  Vxu ! = + �  Vxf !

2 t T 2 T
CT cT

�. 6!

Eqs. �.5! and �,6! show why c�was termed the longitudinal and

cT the transverse sound propagation speed. The longitudinal component

of the field propagates at speed cL and the transverse at cT. We re-

call that taking the divergence of the field equation �.1! annihi-

lated the transverse component of the field and, similarly, taking the

curl eliminated the longitudinal. Taking the divergence and curl of a

vector field separates the field into longitudinal and transverse

polarizations,

We manipulate eqs. �.5! and �.6! as follows:

2 1 2 ~ 1
V ~ [ V � � 3!u + � f ] =0

2 t L 2 L
cL cL

�. Sa!

1 2~ 1
Vx[Vx Uxu ! + � 3 i~ � � f ] = 0

2 t I 2 T
CT c

�. 6a!

We may also write, from eq. �.4!,:

2 1 2 ~ 1
Vx[ V - � 3 !u + � f ] = 0

2 t L 2 L
C  cL

�, 5b!

-+ 1 2~ 1 -+
V. [Vx Vxu ! + � 3 u - � f ]

T 2 t T 2 'T
cT CT

�. 6b!

From vector analysis, we know that if both the divergence and curl of a

vector field vanishes, then the field itself must vanish. The quantities



inside the brackets in eqs. �.5a and b! and �.6a and b! must vanish,

leaving

[7 � � 3 ]u
2 1 2

2 t L
cL

1
� f

2 L
cL

�. 7!

and

[7x'Ux + � 3 ]u
1 2 ~

2 t T
cT

1
� f

2 T
cT

Both of these are now vector wave equations, and we note that the

2 2operator in eq. �.7! must be interpreted as t7 = 77 ~   ! from

eq. �.49!, since it operates on a longitudinal field,

Introduction of Fourier Transform in Time

I-' a! = f  t! e dt �. 9a!

and

f  t! = � F  g!e dz
1 i'

2lT
�, 9b!

IIere F <! is the transform of f t! and z is the frequency. The second

relation is the inverse transformation. From eq. �.9b! one sees that

differentiation in time is equivalent to multiplication by iz in the

frequency domain, or

f t! ~ F ~!

and
� + � +  i~!3

Bt

One may transform eqs. �.5, 6, 7 and 8! as follows:

Equations �.7 and 8! are differential forms in space and

time. Solutions are obtained more easily by transforming in time first.

This reduces the differential form to an algebraic form in the transform

 frequency! domain. One introduces the following Fourier transform

pair:
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2 2 ~ 1�+k � u = � � ~7'f
L L 2 L

cL

�. 5c!

2 ~ l['7xVx � k ]  VxuT! = �  Uxf, !
T 2 T

'T

�. 6c!

[7 + kL]u 1
� f

2 L
cL

�. 7a!

1
� f

2 T j
cT

[r7x7x - k ]u �.8a!

where kL = v/cL, kT = u/cT are the longitudinal and transverse wave-

numbers, respectively. The field quantities u and f are now understood

to be functions of w instead of time t, or

u = u x, r0!

and
f= f{x, z!

Solutions to the Homo eneous Vector Equations

P +k� ~ u =02 2
L

�.10!

� +k!u =0
2 2 �.10a!

2Pxlx � k !  r7xu ! �.11!0

2
 '7x7x � k !u = 0

T
�. lla!

We write the homogeneous forms for the transformed field

equations by setting the body force f to zero. ln general, no body

forces act in a simple thermo-mechanical field. Later, we introduce a

field excitation in the liquid medium by considering f to be concen-

trated in a srrrall region of space. The solid medium, however, does not

have any direct excitation, so the field is described by homogeneous dif-

ferential forms in space. We reduce eqs. �.5c!, �.6c!, �.7a} and

�.8a! to the following:



31

Solutions to eqs. �, 10a! and �. 11a! may be written as in the clas-

sical electromagnetic theory [g2] as

�, 12!UL = V$L
and

�. 13!

where pL is a scalar potential and A is a vector potential. One usually

imposes on the vector potential the following condition

�. 14!V'A= 0

to eliminate the possibility of a component of L being the gradient of

another scalar function. If one writes

V4

where V.A' = 0, the divergence of A becomes

The V~4 term does not contribute to the solution, ea. �.13!, since curl

grad 4 = 0. The condition �.14! eliminates this ambiguity.

Turning to the longitudinal field for the present, we rearrange

eq. �.10a!

V  V ~u!
2

k
UL �. 10b!

Substituting eq, �.12! into the left-hand side of this gives

1'7 $ + � V'u ! = 0
2 L

L

�. 15!

Integrating this result gives

 x, v! = � �  V u ! + 4  v!
L ' 2 L 0

L

�. 15a!

where $0  u! is uniform spatially, and may be set to zero with no loss in
generality because we want solutions that vary spatially. Substituting
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this result into eq. �, 10! shows that gL satisfies the following

scalar Helmholtz equation;

� + kL!!L = 02 2

One sees that the longitudinal field is the gradient of a scalar

function which is obtained by solving a Ilelmholtz equation.

looking at the transverse field, we see that the vector potential

5 is a solution of eq, �.11a! provided U R = 0, or

 VxVx - k !A = 0.
2

T

This shows that if a transverse vector satisfying eq. �.11a! can be

found, the curl of the vector is also a solution, This verifies that

eq. �. 13! is a solution to eq. �. 11a! .

We wish to find expressions for the vector potential A. To proceed

further, we must specify the coordinate system to be used. A cylindrical

 r,z,0! system is used, where z is the vertical axis. This is the most

convenient since the boundaries lie in the  r-8! plane [Figure �! ], and

we expect to have symmetry in the polar coordinate 8 due to the type of

field excitation.

Following the discussion in tlorseand Feshbach [32 ], we express the

vector potential as

�. 17!
llS T z HS

where fHS is a scalar function. The subscript !IS denotes this solution

as a "horizontal shear"  transverse! wave. We see from eq. �, 13! that.

the displacement of the HS polarization is in the r-9  horizontal!

plane. The condition �. 14! requires that



ayVA =kT HS
Bz

or

~IIS = oils   ' " �.17a!

From the discussion above, we know that if the form �.17! is a

solution to the transverse field, the curl of' it is also, or

%s vx 9 !vsj �,18!

2 2
� +k!$ =0, � 1~!

where eq. �.49! has been used. The scalar function for the IIS

polarization must satisfy the Ilolmholtz operator �.19! i f �. 17!

is to be a solution to the transverse field. The same condition

must apply to the VS polarization iF it is to be a solution, or

� + k ! f> = 0 �.1 9a!

To summarize, we have reduced the elastic field equation into

transverse and longitudinal polarizations. Solutions for both have

been obtained in terms of scalar Functions satisfying Helmholtz

equations, The transverse field has two polarizations denoted as

IIS and VS waves. The displacement field may he written as

where /VS is another scalar potential function. The VS designation

implies that the solution is a "vertical shear" wave. This is evident

due to the curl operation. '1he k factor has been introduced in cq.

�. 17! to give <blIS and 4V< the same dimensions.

We need only verify that solution �.17! satisfies the field

equation. We substitute eq. �.17! into eq, �,lla!, using condition

�.14! to give



L I IS VS

where, from eqs. �. 12!, �. 17! and �. 18! we have

L L

uH = kTVxe 4 S �.20!

u = 7x 'axe $ !
z VS

and the potentials $L, 4HS and /VS satisfy

� + kL!$L � � 0

and  '7 + k !

~VS

In addition, $HS fHS r,6,e!. The pro'olem has been reduced to finding
solutions of scalar partial differential equations.

8. The Viscoelastic lfedium

We wish to analyze the field equation for the viscoelastic

medium given by

2+p0>tu -   ~+2u!  >"Zl'!> ]V V u! ~  v u'~,]'7x V»! = p0~
�.50!

2~pz u + [ A+2p! + ia X'+2p'! ]7 V u! + �  @+ized'!Vx Vxu! = -p 7
0

0

�. 21!

One notes that this differs from the relation for the elastic solid

only by the addition of the damping terms  first-order time derivatives!.

We may separate this field equation into longitudinal and transverse

parts as was done for the elastic solid. First, we take the Fourier

transform of eq, �.50!



Ne take the divergence and curl of �. 21! to obtain

 p + + [ A+2u! + ig A'+2u'! ]V } V u! = -p  V~7!2 2
0 0

�, 72!

and
2[p0~ �  u+iau' ! VxVx]  Vxu! = -p,  Vxk! �,23!

Introducing c� and c and damping coefficients b and b defined as

Eqs. �.22! and �.23! may be written

2

 � iu!b !V + � } V u!
L 2

cL

�. 22a!

Qj
2

  � � + i' .! VxVx + � }  Vxu! = � �  Vxf!
T 2 2

cL C

�. 23a!and

In the solid medium the body force 7 does not arise, so we write

these equations in homogeneous form

 V + k !  V u! = 0
2 2

L
�. 24!

2
 -VxVx + k ! Vxu! = 0, �.23!

where

Equations �.24! and �, 2S! are Heimholtz operators. The field equations

are of the same form as eqs. �. 10! and �. 11! for the elastic solid.

We may write, analogous to eq, �. 10a! and �. 1 la! the following for the

viscoelastic medium'.

b � X'+2u
2

pc

2

L 2 cL�+iamb !

2

and kT 2
2 4J

c �+i& !

'T- 2
PCT

1
 V ~ f!

2
cL



 V 4k}0=0

7 +
 VxVx - k !u = 0and

The introduction of viscoelasticity does not change the form of

the field equations in the frequency domain, The only effect is to

change the wavenumbers to complex quantities. Ne see from the form of

the wavenumbers given in eq. �.25} that thev are in the second and

fourth quadrants of the complex plane. We may use the same solutions

for the field obtained in the previous section, eqs. �.12!, �.17!

and �.18! where the potential functions $, f and 4 satisfy
S

1 te lmholtz operators

 V +k!y =O
2 2

~~is

VS

where now the kL and kT are complex quantities instead of. real numbers.

C. Field Excitation in the Liquid

'1'he field equation for the inviscid liquid can be written

from eqs. �.46} and �.34a! as

O d u - XV V u! - p�V. �,26!

If one takes the divergence of eq. �.26!, one obtains

2 1 2 ~ V f
[V - � a]  Vu} =-�

2 t ' 2
Co Co ! �.26a!

This equation can be obtained as a special case of the elastodynamic

equation �,1! by setting the rigidity p to zero, This approach was

shown to be consistent with the conventional one used in fluid mechanics

where the stress tensor is expressed in terms of thc pressure [eq. �.47!]



37

where c0 is the adiabatic sound velocit> given as

c0

or

P0 P00

Now we separate the vector fields u and f into longitudinal and

transverse parts. The body force f must be longitudinal in the liquid,

or

f = f
L

�. 27!

Taking the curl of eq. �,26! then requires

Vxu = Vxu = 0.
T

�. 28!

The dynamic field in the liquid is then purely longitudinal, or

u = u �. 29!

We may write eq. �.26a! as

Ve f

[V � � 3 ]  Vu!

0

�. 26a!

or, in the frequency domain

 V + k !  V.uL!
c0

�. 26b!

where k = e/c, Now, since the divergence of a vector is a scalar, we

may write, in the frequency domain,

-+
Vu = -k

and �. 30!

and

0.

1

~3!
3p s

2
c0



where $ and $ are scalar functions for the fluid's displacement and

body force. The constant factors in eq. �. 30! were introduced to make

the P potential dimensionally consistc»t with the longitudinal poten-

tial function $ for the elastic solid given in eq. �. 15a! . Substitu-
L

tion of eq. �.30! into the field equation �.26b! gives

2 2 ~O
 '7 +k !P

0 0 2
c0

�.31!

terms of the body force f�or its divergence. Now, the transducer is

small relative to the other dimensions of the acoustic field. We may

consider the sound source and the body force field to be located in a

small spherical region of radius a, If one integrates the divergence

of f over the volume V of the sphere, one obtains using Gauss' theorem'

A
� ~ F! dV = f.ndS, �. 32!

V S

If one assumes that the force field f acts in a direction normal to the

surface of the spherical volume, or radially outward, we may write the

radial component of k as f
r

one has

If, furthermore, wc assume F is constant,
r

J �-7!dV = dS = 4~a  f !2
�.32a!

Equation �.32a! implies that the divergence of f ma> be represented by

a Dirac delta function 5 r-r'!, where r is the field point and r' is

This result is seen to be an i»homogeneous scalar tlelmholtz equation.

The excitation to the field  liquid overlying a layered solid! is taken

in the liquid. The excitation must represent the effect of an acoustic

transducer as a sound source. We wish to represent this sound source in



the source point. We recall the cliarac tcristics of the delta function [54]

if r' is in V and �. 33!

h rr'! =0 forr fr'

�.34!

where I< e! is the transformed from of the time dependence of the field

excitation. That is, eq. �.34! separates the spatial dependence of $

from the time or frequency dependence, 'I'he inverse transform of Il z!

will be taken as h t!. Now, one may denote the response of the field p

due to the excitation as a Green's function[34],l30 ] denoted in the

frequency domain as

G r, r', z! . �. 35!

Applying eqs. �. 34! and �, 35! to �. 31! gives for the liquid field

�. 36!

Denoting the Green's function in the time domain as

g  r,r',t!

enables us to write eq. �. 32! in the time domain as follows;

We note that the right-hand side of eq, �. 32a! is a constant, so

from the integral representation of the delta function in �.33! we see

that '7 f is proportional to the delta function. We also see from eq. �.30!

that the force potential Q is proportional to the delta function, We

may write for the right-hand side of eq, �.31! the following:



Equation �.36! is much easier to solve for the present problem,

so this form wi ll be used in the fol lowi ng chapters. After solving for

the Green's function in the frequency iiomnin, we obtain the time domain

representation by taking the inverse I'ourier transform �.9b!

1 ~ ~, lb!t
g r,r',t! = ~ G r,r',u!e dz �. 38!

The field excitation as given by eq. �. 36! occurs only at a

point r'. From the definition of the delta function �.33!, one sees

that eq. �.36! reduces to

2 2
 V + k !G r,r',v! = 0 for r j r'. �.39!

That is, the governing equation is a homogeneous Form except at r = r'.

The displacement field in the liquid may be expressed in the same form

as for the solid, ar

�.40!u0 = 7G for r = r',

from eq, �. 12! for the elastic solid. This is a solution to the field

equation �.39! due to the form taken for 7 u in eq. �.30!.

The location of the source point r' will be taken on the z-axis

in a cylindrical coordinate system  r,z,O!. The type of excitation is

obviously symmetric with respect to the angular coordinate 6, so the

field will be a function of only z and r. Furthermore, one would not

expect this source representation to excite the IIS polarization [eq, �.17!].

The IIS polarization consists of motion in the r-6 plane only, and does

not vary with z. Therefore, the dilatational nature of the acoustic or

liquid field excitation, cannot impart this type of motion. The motion

in the solid field will then be restricted to longitudinal and VS polari-

zations, In addition, the 9-symmetry in the liquid will apply as well

to the solid.



D, 'I'he Stress and Vis lacement Fields

uL V/L,

HS
�.20!k Vx f g !

Vx Vxf $ !and uVS

where u = u< + u><S + u S. Using �.49!, the expression for uyS may

be written

"VS = '"' ~ S' - '  ' ~ys'
�. 41!or

~VS 23
u= V '!-&V!

z VS

To compute the expressions for the components of the displacement

vector, we recall some vector identities for cylindrical coordinates.

Taking f as a scalar and 4 as a vector field, we have:

df 1 3f BE
Vf= � e + � � e + � e

3r r r 30 0 dz z

1 3 380 3B
V4= � �  rB! + � � +-

r dr r r 30 3z

3B0 38 BB 38

!e
r z 1 3 r

3z r Bz Br 9 r 3r 0 BO z
!e + -[ �  rB ! � � ]6'

3B

Vx8 =  
r 39

2 13 3r 1 3 f 3 fVf= � �  r � !+ � � +
r 3r 3f 2 2 2

r 30  !z

where B, 8 and B are the r, 0 and z components of 4, anct
r' 0 z

P,
e,e,e

r z

are the corresponding unit vectors.

We wish to express the stress and displacement fields in

terms of the scalar potential functions gL, $~S and fyS Due to the

symmetry in the field, we use cylindrical polar coordinates  r,z,0!

where z is the vertical coordinate. The displacement has been expressed

in terms of the potential functions in eqs. �.20! as



We may write the displacement vector as;

u= u6 +uk + uC
rr93zz

Applying eqs. �,42! to �.20! and �,41! gives, for the various polari-

zations of the displacement vector:

u = f + � Q +
I Br r r 39 9 Bz

1 ~HS ~HS
HS T r 39 r 3r 9

�. 43!

and
2 2

"e. "a. ' .k'! a
Vs ariz r aeaz 9 2 T VS z'

� z

The components of the displacement may be written
2

'T '<Hs ' >VS
r Br r 39 Br3z

2
'<HS 1 ' <Vs

9 r 38 T 3r ra9az
�. 44!

and

. 3'.+   2 + kT�~S.
az

U = � +
z az

both of these. We write for the displacement field of interest
2

' <vs
u +

r Br Br3z

�.45!

2 T VS
3z

and

L'quations �.45! wi 11 be used to solve the boundary-value problem

to be developed in the foIlowing chapter.

The displacement field simplifies considerably when 9-symmetry is

present. It simpli fies even more when the HS polarization does not

occur. The field excitation discussed in the preceding section includes



The simplified stress field is no}i' developed. Ne recall the exl}res-

sion for the stress developed earlier

�.42!o.. = Ac 6., + 2peij KR ij ij'

Viscoelasticity can be introduced easily by taking the Lamb' parameters

as complex constants in the frequency domain. Vow, in eq. �.42!,

is, in invariant notation, V.u. From eq. �.l5a!

2c � 7 u � kL/L.

l<e write from eq. �.42! the stress tensor in cylindrical coordinates

o = A7~u + 2pE:
rr rr

cr = AV-u + 2}jc
zz zz

a = X'ii".u + 2pz
�. 46!

0 = 2QF
rz rz

o' = 2uF
ze zO

0 ~ = 2uc

The strain tensor in cylindrical coordinates is expressed in terms

of the displacement as [26]:

E
zz

'aa
�.47!

2E
rz

2E
ze

2E
r9

3u
r

3r

3u
z

c}z

3U

r ae

3u
r

az
du

z

r 36

3Ll

u
r

r
du

z

Br
3u

' az

0

r r38



Introducing the field symmetries reduces eq, {3.47! to

Ju
r

E
rr 3r

3u
z

E
zz az

u
r

F
E36 r

3u au
r z

2g = � +
rz 3z 3r

�. 47a!

2g =0
ze

2p = 0
r9

2
a a'

= � + �  +k!]
zz 2 3z 2 T VS

3z 3z

1 3 3
'ee = . a'~L ' a. ~VS!

{3.471!

rz 3r3z ~L gr 2 T!~VS
'dz

2c ~ = 0
ze

2z = 0
r8

We apply these results to the stress field �,46!, expressing 7 u

in terms of the longitudinal potential to give

2, 3'
2  <L ' az >VS'

L L 3 2 T ~VS �. 48!

a = -Ak $ + 2u � �  $ + � $ !2 1 3 3

88 L L r 3r L Bz VS

We apply eqs. �,4S! to �.47a! to give for the symmetric stTain field:

= � � ~ � 4 !
a' a

rr 2 L 3z VS
3r



Equations �.45! and �.48! are the required expressions for the

displacement and stress fields. These expressions will be used to

evaluate boundary conditions at interfaces between different media.



IV. THE SOLUTION OF THE BOUNDARY-VALVE PROBLEM

A. Pre 1 i min ary

�.36!

subject to appropriate boundary conditions at the surface of the liquid

layer and at the liquid-solid interface. Now, the acoustic field is

coupled mechanically to the viscoelastic field, so we must solve two

Helmholtz equations for each solid layer

�+k.!$,=0
Lj Lj

�. 16!

� + kT.!~VS2 ~ 2
Tj VSj

�. 19a!

where the subscript j refers to the particular layer. The problem will

be solved by introducing a Fourier-Bessel trans form  SSJ to the governing

equations �. 36!, �.16! and �.19a!. Tnen boundary conditions will be

applied at the interfaces between each layer and at the surface of the

liquid, in accordance with the results of Chapter II. We begin by

We wish to derive an expression for the response of the

system shown schematically in Figure 1. The system is a field con-

sisting of a liquid layer overlying a layered solid halfspace. We

place an acoustic source in the liquid and use the linearized viscoe-

lastic model for the solid. The precise geometry and coordinate system

used for the problem is shown in Figure 2, The source is located on

the z-axis of a cylindrical coordinate system. The symmetry of the source

eliminates the polar �! dependence and HS polarizations in the solid

are ruled out.

The problem is posed as follows. We wish to solve the governing

equation for the acoustic field



R
i!

ER
Pe!

nth L4YER

 Pn,~h,Pn !

FIGURE

Dimensions and Coordinate System Used for Multi-Layer Problem
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solving eq, �. 36!. 1 irst w<. express the Di rac delta function as [lp ]

�. l!

This form implies that the source is at r = 0, z = z', as shown in

Figure 2. The Green's function may be expressed in the form

G r,r',v! = G r,z,z',u! �. 2!

2The V operator in eq. �. 36! ~educes from �.41! to the form

2 1 37 = � �  r � ! +r3rBr>2
Bz

Appl> ing this result and eqs, �. 1! and �.2! to eq. �. 36! gives

2

[ � �  r � ! I � + k ]G r,z,z',v!
1 3 <3 3 2, 5 r
 z-z'!
r dr Br > 2 0 21Tr

H u!!. �, 3!
3z

We apply the Fourier-Bessel transform to eq. �.3! to eliminate

the variable r as a di fferentiial form. The Fourier-Bessel transform

pair is written as ['l ]

g z! = g  r! J  gr! rdr
0

�. 4!

g r! = Z Z!J0 Cr!Cds,
0

J 1 3 3 d
� � [r � G r,z,z',a! ]rdr +  �
r 3r 3r 2

0 dz

2
+ k !G q,z,z',v!

5  r! J  gr!dr,
-6  z-z '!ll z!

2' 0
0

�. 5!

where G is the transformed form of the Green's function.

where the bar under the variable denotes the transformed quantity. The

zeroth order Bessel function has been used in eq. �.4! due to the 0-

symmetry. Following a related calculation for a ring source excitation

from Stakgoid [51], we transform eq. �,3! using eq, �.4! to obtain



L!ue to the sifting property of the delta function, thc right-hand

side of eq. �.5! reduces to

since J �! = 1,

l~e apply partial integration twice to the first term on the Left-hand

side of cq. �.5!, giving as a result

2
[- --  k0 - g ! ]G t;,z z',e! = � tI z!l 2 2, 5 z-z'!

dz

�.6!

2 2 k - . !]C> q,z,z'! = 0
dz

for z' < z < h
0

�. 7!
and

+  k - ~ !]G  g,z,z'! = 0 for 0< z< z',d 2 2

dz

where ~G denotes the Green's function above the source and G< below the
source. Solutions to eq. �. 7! are writ ten

-a�z a z
~G=Pe+Qe forz'<z<h 0

�. 8!

0 0G =Re +Se for0< z< z',

where a = � - k�!, and the positive square root is taken. The2 2'i

quantities P, Q, R and S are functions of 4 and the physical parameters.
These must be evaluated using the boundary conditions of the problem,

L'quation �.4! is an ordinary differential equation in z. The r-
dependence in eq. �.3! has been reduced to an algebraic form in the

transform domain.

Ls'e solve eq. �.6! using a Formal Green's function procedure given

in ilildebrand �4]. ii'e write two independent solutions to the homogeneous

form of eq. �.6! for the Green's function above and below thc source:



0

in addit ion., two requirements are imposed by the formal Green's func-

tion procedure. These are the continuity of G at the source  z=z'1

and the jump in the first derivative of .. at the source, The first

condi ti on requi res

  ;,z', ~ '! = G  q,z',z'! �. 9a!

The second condition;!rises from integrating eq. �.  >! across the

source in the .-direction:

r dGd � ! 1   g!!
�   � !dz
dz dz 2T 

Z

where c is taken as small, and the sifting property of 6 z-z'! has

been used. Thi,s res  lt may be wri tten

d d[ � � G  g z ..'! � � G  g z z'! ]
dz � > ' ' dz ~

11  !,!
�. 9b!

z=z' 27r

. 'IUe may immediately impose one simple boundary condition. The

pressure must vanisi! at the surface of the liquid. 1'rom eq. �.48!,

we see that the stress tensor for the iiq !id above the source is

2
o =o =a =-Ak G

rr g11  zz 0 � !
�. 10!

c  =o =er =0
rB rz Oz

and from �.47! we see the stress is related to the pressure by

This implies that the Green's function vanishes at the liquid

surface, or

atz=h
0G, r�z,z'! = 0 �. 11!

Now we apply the three conditions �.9a!, �.9b! and �.11! to the

solution form �.8! to eliminate three of the unknown functions of'  :,

leaving



 !
 '> = � ' ! i!c s! till [a  h  I

  I . 1'7!

'  !  ! . i I     !!
0 0 1za

 ; + -"  / q!e si !h a Ih - ! + sinhIa  z'-z!] !
 !

The function g = Q g,z, '! will hc evaluate<I hy appl> ing houndary con-

ditions at the bottoxn of the liquid layer.

 !,   recn's I'unction for the  !nhounded Liquid

Iv'e develop here a special case of the problem wnere the fluid

is oi infinite extent. 'I'he depth h0 is i»fi»ite, and no solid bottom

is present., So 1utions to eq. �. 7! must he wr i tte» in the form

 j = Pe
0 For" > z'

�. 1.~!
a»d

 !
 i = He for z < z'

I I

Pe = Se

�.14!
and

z a z'

Pe
0, 0 I I  v!

+ Se
0

The solutions become

 z,-z'!

I i a!! e
4»a

for z> z'

�. 15!
and -a  z'-z!

I 1  cu! e
0

-'< 4' a� for z < z'.

The result is a special case of cq. �.F!. 'I'he terms with the q and R

factors were dropped so that the solutio»s vanish for ~ z~ large. This is

equivalent to a radiation condition. Ke apply conditions �.!!a! and

�. 3h! to the solutions giving
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'We may combine the two expressions �,1S! into one

-ao z -z !
G <iziz' i>!

H v! e

0

�. 16!

where
z = i'lax z,z'!,

z = iilin  z, z ' ! .
and

This notation is used to combine the two expressions G and G into one,

It impIies reciprocity. That is, the Green's function's form remains

the same if the source point and the field point are interchanged. Ke

write eq. �,16! in the r-domain by taking the inverse transform using

eq. �.4! ~ -a  q-z !
Q

G r,z,z',u! = f � JH  u!! e
4~/, a �. 17!

2 2 >
where we recall that a = g, -k ! '. This result is the same as

Sommerfeld's [51], except that we have a more general time dependence

due to the H ta! factor. Sommerfeld took a harmonic time dependence.

The 4' factor occurs due to the form of eq. �.36!, and does not occur

in Sommerfeld's result because of his different approach to the problem.

The Green's function for an unbounded medium is well known [46]

[35 ]. We write -ik R

G r~z~z, d!
H v! e

4'
�. 18!

-ik R
1 0 14!tg r z z',t! = � 2 H M!e e d~,

8' R

Recalling th at k 0 = v/co, one h as

g r,z,z',t! = H <a!e -0
8TI R

�. 19!

2 2where R = [ z-z'! + r ] is the distance from source to receiver. One

may write eq. �.18! in the time domain using the inverse Fourier trans-

form in time [eq. �. 38! ] to obt in



Eq. �. 19! is a superposition of harmonic waves due to the kernel

ie t-R/c0!
e where the spectrum 11 z! is a weighting function

in the frequency domain. For a harmonic time dependence, the weighting

function H v! becomes a Dirac delta function, or

11 ui! = 27t6   v-e0!,

where u is the frequency of the si gnal. 1.'q. �. 19! reduces to the

following for the harmonic time dependence

i' t-R/c0!
g r,z,z',t! = R e

4zR
�,20!

This result is a harmonic, steady-state spherical wave train propagating

radially outward.



. n a 7

1 Ae ~ + Rc8 ct j

and a g, 7 ay Z
C.e + LE,c

3
4ma . j j

whe 1 c
2 2

a,= t;-k

and h. < z < h, 1 . The a . and a,. expressions represent a
Qj Bj

positive square root. Ne change notation in eq. �.22!, denoting longi-

tudinal field quantities with an a and the VS field with a 8 subscript .
thTile potentials $ and $ for the n or last layer  a halfSpaCe! must

~E ~n

vanish as -z ~ . TIEis requirement is met by setting the functions An

and C in cq. �.22! to zero. This is, in effect, a radiation condition.
n

lite may consider the B. and D. terms as representing outgoing waves prop-

agating downward and the A. and C. tcrEtls as upward-traveling waves.
3 3

The solutions �.22! may be applied to tho expressions for the dis-

the stress field eqs. [�.43! and �.48!] . Boundary
.th .thapplied at the j interface separating the j and

placement field and

conditions are then

th j+1! layer. The boundary conditions applicable to the solid-solid

interface are:

1. Continuity of stress

2, Continuity of normal displacement

3. Continuity of tangential displacement

Expressing these three in the cylindrical coordinate system gives:



3! u, = U
zj z j 1!

ii! u
r} r  j+ I!

�. 23!

iv! a , = n
zzj zz   I+I!

and

ap

3$ 2
u = > +  k~+ 2!g~,

3z

�. 24!
2

0 =-Aky + }! �   +   � -+k!y]zz u rx 3z Rz > 2 F 8
3z

Ref! 2
a =p � [2 � + � +k !g].

rz 3r Bz 2 f3 f3
c}z

and

We apply eqs. �.24! to �.23! using eqs. �.22! to obtain a rela-

tion that may be written in matrix form as

j,j  j 1!  j+1!,j '
�.25!

where the [a, ] and [a . ] factors are �x4! matrices, each row cor-
j  j+ 1!

responding to one of the boundary conditions �.23!. The vector quan-

tities A,, and A .. are �>1! column matrices related to the un-
 j+1!, j

known functions A., B,, C, and D. in eq. �,22!, We denote the sub-

scriot  j+1! as j ' for shorthand in the following. The I a, ] matrix is
j

given as

Equations �.23! may be expressed in terms of the unknown functions A,,

etc. in eq. �.22! using eqs, �,45! and �.48!. We write for convenience

from eqs. �.45! and �.48!:



2.2.2 2 2 2 2 2
p-8. �|; -k ! p 8. �  -k -! -Zp.6-a .q

pj j j Rj j j 5j

2 2
Zp.g,a, z

j j pj

2
-2p,g . a Zp.g.a

2 p 8 �  -k! ! p 8 �|: -k! !2 2 2 2 2 2

8j
[a.] =

a
Q3

by increasing the index by one. Ne write the column matrix as follows:

a .,h.
o.j ' j

1
QJ

-a .,h.
S e

' 1<xj '
�. 27!

-a .,2>.
D.,e

Bj'

This relation may be written in a simpler form as the product of

a column matrix and a diagonal matrix. We write

 A,, ]A., �. 28!

where the column matrix A., is
1

�. 26!

2 2 2where g, = z k ., The [a . ] = [a., ] matrix is obtained from �. 26!
j Hj'  j+ l!



�, 28a!

and the diagonal matrix is written as

-a .,h.
j

[A, ] �. 28b!
a .,h,

Hj j

Substituting eq. �. 28! into �.25! gives

�. 29!

�.30!

To simplify the notation, we may write the product of the four square

matrices in eq. �.30! as one matrix relating X. to A.,

�. 30a!

where we recall that I '

multinlying ooth sides of

-1
and [A,,] to obtain

3 ~ 3

A.,

aoj'

 j+1! . 14e solve the above for 5,. b> pre-
-1

eq. �. 29! by the inverse matrices [a, ]



where

[b, ] = [A -] [a ] [a,][~-, ]
3 ~J 3 ~3 3 J

Now, the matrix [b ., ] is a function of g and the physical para-
 j+1!, j

th .th
meters of the  j+1! and the j layers. We may apply eq. �. 30a!

successively to relate the coefficients of any two layers. Ke note that

eq. �,30! or �.30a! are recurrence relations. That is, the coeffi-

cient functions of one layer are given in terms of those of the next

lower layer and the physical parameters in both layers,

A successive application of eq. �.30a! will relate the coefficients

th
of the first layer  j=l! to those of the n or last layer. We write

a product form as follows;

II [b ] X �. 31!

where we may set

Eq. �.31! may then be written

�.31a!

where recurrence relation �.30a! has been used to successively elimi-

nate the coefficients of the intermediate layers. The effects of the

intermediate layers are included in the [14] matrix, which is a function

of ~ and the physical parameters of all the layers. One may denote the

elements of the [M] matrix as m , i, j = 1, 2, 3, 4. Using eq. �.28a!,
lg

we see we may write �.31a! in expanded form as
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A B
n n

= m + III
a 12 a 14 a

ul QIl gn

I!
n

24 a
gn

B B
n

m
a 1 22 a

el CQl

�. 31b!
C

'gi

B
n

m
32

lVl

D
n

34 a
Bn

D B D
n n

m � + m
a81 42 a 44 a~

Lquation �. 31b! is a condensed expression for the dynamics of the

entire layered viscoelastic halfspace. 'I'he successive application of

the recurrence relation �. 30a! given in eq. �. 31! eliminates the coef-

ficientss A,, B,, C,, I!. for j = 2, 3, ...,  n-1!: i, e., the explicit

CalCulatiOn of the pOtentialS $ and 4~. far the interrllediate layerS
8J

is not necessary. We note that the four coefficients of the first layer

are related to only two coefficient:s in the last layer.



D. The Liquid-Solid Interaction

i! o = a = -p' at z = 0zz� zz 0

ii! u = u
Z o Z �. 32!

iii! a = 0
rz 1

where the subscript 0 refers to the liquid and l to the first visco-

elastic layer,

I'he first two conditions are continuity of normal stress and dis-

placement at the interface. These arise from the equation of motion

and the continuity equation. The third is a consequence of' continuity

of stress at the interface. We note that the inviscid liquid cannot

sustain a shear stress. The continuity of tangential displacement has

been relaxed due to the presence of the liquid.

One evaluatcs eqs. �.32! using eqs. �.21!, �.22! and �,24! to

obtain the following matrix relation:

Tho dynamic field for the system  Figure 2! may be deter-

mined now using the Green's function for the liquid �.21! and the

result for the layered viscoelastic bottom [cq. �. 3lb!] . The inter-

action of the liquid and the solid fields is determined by the boundary

conditions applicable at the interface separating the two media. The

1>oundary conditions are:





2 2 2 2 2
22 "1 1 ~ Pl 12 22 42 32 '1 1~ 81'

2 2 2 2 2

23 1 1 ~ Pl 14 24 44 34 1 l~ gl'

2 2

32  xl 2 12 ~ g 1 32 42

2 2b33 = 2a 1 m24 m14! + �q � k81! {m34 m44!

Since we are primarily interested in the acoustic f'ield, we wish

to solve for A in eq, �. 34!, Applying Framer's rule gives

A = 2�
0

�. 35!

where

and

h = K a cosh a h ! - K p uPsinh a h !.

and {4. 35a!

The expression for A in eq. �.35! is applied to the Green's

22ppv sinh apz'

and

K2Ppe s inh apz2
Kacoshaz

G

lap osh aph � K p M sinh a h2

2

12 1 22 12 ~ 32 42

2

13 col 24 14 ~ 34 44

K a cosh a z'! - K p u sinh a z'!

The factors K and K are given as

'1 � '22'33 '32'23

2 12 33 13 32

fun ct ion expres s ions �. 21! t o yie 1 d

Klapcosh apz '
sinh[ap hp-z! !

0 K apcosh aphp

sinh [a  h -z'! ]2!l  e!
4~ap

p inh ah
2

�. 36!
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h'e may apply the notation used in eq. �.16! for the unbounded fluid

to combine these two expressions for the Green's function, giving

2
Kpusinh a z !2l! v!   . ~  > !~ Kla1cosh a z !

0 LK a�cosh a h ! K2$0�s inh aOh!!
2

�, 37!
where, as before

z = Max  z z !

domain may be written using eq. �.4! as

G r,z,z', u! = G g,z,z'! JO  r! gdg. �. 38!

One may observe that the singularities of eq. �.37! are important

when performing the integration indicated in eq. �.38!. Pole singu-

larities occur when the denominator of eq. �.37! goes to zero, or

0 K1a0cosh a0 0 K2 OM»nh ao 0
2

�. 39!

One may manipulate this into the following form

t anh  aOh0!
1 0

K p  d

where the dependence on the water depth appears on the left-hand side

and the subbottam effects are on the right.

z = min  z,z'! . This result is a consequence of the principle

of reciprocity whereby the form of the Green's function is invariant

with respect to an interchange of the source and field point.

Equation �.37! is the transformed expression for the solution to the

muLti-layer problem. The factors K and K contain all the effects of

the layered viscoelastic subbottom due to their dependence on the [M!

matrix, as can be seen from cqs. �.35a! and �.34!. The actual Green's

funct ion must be obtained by taking the inverse Fourier-!kessel transform

of eq. �.37!. The expression for the Green's function in the frequency
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The Green's function expressions given in eqs. �.37! and �,38!

are too complex algebraically to analyze directly for the general case

due to the dependence of these expressions on the recurrence relation.

However, these forms, as developed here, are ideal for computer analysis

due to the introduction of the recurrence relation [eq. �.30a!] and its

result [eq. �.31!]. The recurrence relation reduces all calculations

to �><4! matrix operations, which can be performed easily on a computer.

The general n-layer problem, i f solved without benefit of a recurrence

relation, would require inversion of a �n-2! square matrix. The order

�n-2! of the matrix is governed by the number of coefficient functions

A., B., C. and U. in the expression �.22! for the potential functions

for each layer. The computation time of the analysis will become exces-

sive with a large number of layers. Applying the recurrence relation

reduces the computer time for n large due to the cascading feature seen

h eq. �.31!. That is, doubling the number of layers will result in an

approximate doubling of computer time. Another obvious advantage of the

recurrence relation is the conciseness of the notation and its generality,

both of which are advantageous for comput: er work.

The general expression �. 37! for the Green's function for the

response in a multilayered halfspace is too complex to analyze further.

We now examine some special cases that are of interest. The first case

we examine is that for one viscoelastic layer  n=l!. In this case the

solid subbottom is taken as a homogeneous halfspace. This problem has

been analyzed by Press and Ewing [40] previously for an elastic solid

subbot tom.
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1! One Viscoelastic Layer  n=l! In this case, the recurrence

relation �. 31! is not required. The [M] matrix �. 3la! and �. 3lb!

reduces to

m22 = 1

m = 1

elements are set to zero. The b,. elements appearing in
l. 7

to the following

12
a

ul

2

2 2
23 ~1 1 91

b32 2a 1

b =�q -k

Applying these to the expression for Kl and K2 �.35a! gives

2 2 2 2 2 2
K=pg�<-k!-4pg<a a

2K2 = -k la . Applying these results to the general expressionand

Cat' the Green's function �. 37! gives, after some rearranging

G z,z,z'! =

sinh[a  h -z ! ]2I I  g!

�. 40!

This result agrees with Press and Ewing's [40] equations �6! and �7!,

after changing coordinate systems and notation. Our result contains a

and the other

�.34! reduce

� a- [�g -k ! -4a a q ]cosh a z !+a k sinh a z !
0   zl Bl 0 <

� a [�g -k ! -4a a r, ]cosh a h !+a k sinh a h !p0 0 Pl ol 81 0 0 gI PI
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2! Infinite Liquid Layer De th  h ~ ~!. The general expression
0

for the Green's function reduces to the following:

G q,z,z'! =

K a�cosh a z ! - K p z sinh a z !2

2H z!   0 >!
e

4za

�. 41!
2

 Kla0 - K p0u! !

Note that the frequency equation reduces to

2
K la0 K2p0"

If one combines the two special cases by setting n=l and h -+ ~,

the Green's function takes the form

I 2 2 2 2 4� a [�  -k ! -4a la g ]cosh a z !+k a sinh a z !
0

0
G <,z,z'!

2H e! 0
e

4va
I 2 2 2 2 4

p 0 Pl al gl gl al

�. 42!

Equation �.42! represents the Creen's function for the semi-infinite

liquid over a homogeneous viscoelastic halfspace.

The result for the infinite liquid layer depth �.41! may be re-

arranged and put into the following form by expanding the sinh and cosh

terms in the numerator:

1/4m factor due to the Green's function formalism. 1Ue note that the

introduction of viscoelasticity does not change the Green's function form.

The parameters k and k in eq. �.40! become complex quantities, as

do a I anda~

Another case of interest that can be derived from the general

result is the infinite-depth case. Here we simply take h ~ ~ in
0

eq. �. 37! .



 : I;,z,z'! =
 -I  z!

'0

Via !+4~@0|4-a  z -z ! -a  z +z !
0 > < 0

e + e �. 43!

'lao "2 "0"

   >! '0' ' ! -'0 ' '- !N <!
Ci <,z,z'! = � e

4~ao
+

D a!
�.44!

whc re
2

4F a a
o,l R2|; 2

N g! = ma   � - 1!
0 2

81
k4

81

2

o,l 8

� 81
D�! = ma   � � 1!

2g 2
0 2

81

+ a
ol

m = ol/P0.and

Performing the inverse Fourier-Bessel transformation on the second term

of eq. �.44! will be the purpose of Chapter VI. The next chapter will

be concerned with the inverse transformation of eq, �.40!.

One sees that the fi rst term is identical to eq. �.1 i! for the unbounded

fluid. This implies that the term represents the direct wave  through

the water! from source to receiver. The second term is the response

due to the presence of the viscoelastic subbottom. The second term

includes the effects of reflection, refraction, surface waves etc, as

wi 1 1 be shown in Chapter VI.

One may write eq. �.43! for one solid layer  n=l! as follows:



V, GREEN'S FUNCTION FOR TIIE RESI'ONSE IN TIIF, LIQIJID

LAYER OVER LYI NG A IIOI'IOGENEOUS VI SCOELASTI C IIALFSP ACE

A. 'I'he Integral Form for the Green's I'»nction. One may write,

from the result of the preceding chapter, the Green's function for

n=l, or one viscoelastic layer  a halfspace!

2

G r.,z,z',u!! = 4 sinh[a  h�-z !]2 I I  v! . N  g !

0 D F; !

�.40!

where

2 2 2 2 4N e ! = map [�< -k>!' - 4a a>~ ] cosI!  apz<! + a k> sinh apz<!,

D g ! = ma [�  -k ! - 4a a   ]cosh a h ! + a k  sinh aphp!,2 2 2 2 2

0 C a 8 0 0 a

a I = a, asl � a�, k~i � k~ and k I = k

G  r, z, z',<o! = G l;, z, z',u!d  gr! l;dC
!!

�.38!

or, from eq, �.40!:

G  r, z, z',!!!!
ZII  u!

sinh[a� h�-z !] 2

ap D v !

�. l!

This expression is an improper integral due to the infinite upper limit

and presence of singularities in the integrand. The integration of

eq.  S.l! has been discussed by Press and Ewing [40] for the clastic

solid case. The discussion here treats the more general case where

I'.quation �.40! is the Fourier-Bessel transformed form for the Green's

function. We wish to perform the inverse transformation using eq, �.38!

The desired form for the Green's function in the frequency domain is

written as an improper integral in the form
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damping or viscoelasticity is included. As discussed before, viscoelas-

ticity effects are manifested by the imaginary component of the wavenumbers

k and k< in the subbottom.

We choose to manipulate eq. �.1! so that the range of integration

includes the whole line, or

To do this, we note the fo11owing relations involving

zeroth order Bessel functions [28]-

xx cosh u
e du,�! -2i

2x f -xx cosh u
e du

J,

2 0
[H  x! + H  x! ].

0

H�!  �!
0

JO  x!

�. 2!

and

The last identity is analogous to the breakdown of trigonometric functions

into exponentials, as pointed out by Sommerfeld [47]. In particular, one

may write

1 ix -axcosx = � [e + e ], a form directly analogous to the

expression for J0 x! in eq. �.2!. The functions J0 x! and cosx may be
considered standing waves, while the exponential forms and the Hankel

�! �!functions H and H represent traveling waves. The radiating waves

may bc incoming or outgoing  radiating! depending on the form taken for

the time dependence. The time dependence is governed by the kernel of

the Fourier transform in time. We see that the kernel for the function

1 Ktf t! in eq. �.9b! is e . Therefore, outgoing waves must have as nega-
-1x

tive exponent; e.g., they must be of the form e . One sees from

eq. �.2! that the integral form for H is, in effect, a superposition�!

of outgoing waves. For this reason we wish to express eq. �. 1! in

terms of the Hankel function H . Since the argument of the Bessel�!
0
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�! .function is t;r, one sees that ti~e choice of Il  i;r! represents radia-
I

tion in the r-direction. The variable of intograt ion v is then a

wavenumber, so the integration is over the wavenumber domain.

One also notes the following identity:

ii  -x! = -Il  x!
0 0

�. 3!

which can be verified by inspection from the integral forms for the

iiankel functions in eq. �,2!. I~'e substitute the last identity in

eq. �. 2! into eq. �. 40! to obtain two terms:

r sinh a� hO-z !
0 ao

2 �! r ! ii  qr!qdr +G r, z, z',e!
I-I  i~!

sinh a  h -z !

r+
0 0

2 �! < ! IIO  «!<d �.4!

The first integral is in the desired form. We change variables in the

second as follows:

f sinh a0 h0-z!! N ~ 2
G r,z z' ~! = 4g J D � ! II !  Gr!QdQ ~ � ~ 5!

0

This form will be more convenient for evaluation using complex variable

techniques and contour integration.

Equation �.5! is now expressed in nondimensional form. We recal 1

that t; is a wavenumber, so it is natural to define a nondimensional

variable of integration x in terms of the wavenumber k0 in the liquid

x= g/k

and �. 6!

dx = dg/k

and dg' = -dg, where we note that a  g! = a  g'!, etc. The identity
0

�.3! is applied to the second integral. After elementary manipulation,

we write the integral form for the  >reen's function as:
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In addition, one may introduce the following nondimensional parameters:

u=k /k0,

8 = k /k � 7!

=kr.
0

and

Here m and g are complex quantities if damping is present in the sub-

bottom. The nondimensional parameter y is a ratio of two length
r

scales. This may be seen from the relation between the wavelength A in

the liquid and the corresponding wavenumber:

2z 2nc0
0 k

�. 7a!

where z is the frequency. If one applies this to the expression for y
r

in eq. �,7!, we have

Referring to Table 1 in Chapter I, we see that for marine sediments in

shallow water

Re g! < I

1
k0  x -1!a

0

1~
k0 x - x ! �. 7b!

2 1
k� x -8 !and

We express eq

y = �, a ratio of two length scales.2nr

r = !'0

and Re g! ! l.

The quantities a, a and a may be written

�. 5! in nondi mens ional form us ing
00 ~1

koH M! slnh [ko ho-z,!  x -I! ']
4n' 2 2OO  x -1! '

eqs. �, 6! and �. 7!:

2

 y x!xdx,�! 0 r
�. 8!



where

2 2 ' 2 2 2 2 2'; 2 2',2 l~
N x ! = m x -1! '[�x -P ! � 4 x -v ! ' x -g ! x ]cosh[k z  x -1! '] +

0

+ P  x -n ! sinhfk z  x -1! ]
4 2 2 2 '2

0 <

2 2 " 2 2 2 2 2 '; 2 2 ~~ 2 2
D x ! = m x -1! [  x -8 ! � 4 x -o ! ' x -p ! 'x ]cosh[k h  x -1! ']

0 0

4 2 2+ 8  x -o. ! 'sinh[k h  x -1! 'j.
0 0

� 9!z= x+ iy

plane, where the contour includes the real axis and the singularities of

the integrand of �.8! in the z-plane are taken into account. Note that

the complex variable z is not related to the coordinate z in Figure 2.

In the fol lowing, the symbols z and z wi1 1 be used for z and z ' repre-

senting coordinates to eliminate confusion.

The complex variable z = x + iy is introduced for x in the

int~ grand of cq. �.8! . We write the contour integral I corresponding

to eq. �. 8! as:
1

sinh k0 h0-z !  z -1! '
I

 z -1!

I 2
II  y z! zdz, where �. 10!�! 0 r

V  z ! and D z ! are of the same form as in eq. �. 8! . We must now
2 2

choose an appropriate contour so that part of it. lies along the real

axis. In addition, the singularities of eq. �.10! lying within the

contour must be analyzed. Two kinds of singularities occur: poles and

branch points. The branch point singularities occur due to the presence

of quantities taken to the I/2 power and tiie Hanke1 function. These

We wish to evaluate the integral �,8! using complex variable tech-

riqucs. Onc does this by integrating around a closed curve in the complex
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make the i»tegrand of eq. �.1~!! multiple-valued»»less one drys cuts

from the branch points to points on the cnnto»r where the integrand

vanishes. 0»e may then specify a branch  For each singularity! making

the intcgrand single-val»cd provided thc contour docs not cross

branch cut.

Poles occur where thc i»tegrnnd becomes inf'inite; i .e. when

D z ! = 0.
2

�.11!

Equations �.11! is the frequency equation for the system. That is,

solutions  roots! of this equation represent no»dimensional wave»»mbers,

+
or spatial frequencies. Ye note that pnies apparently occur at z = -1

2
due to the  z -1! factor in the denominator of eq. �.10!. These are

not true poles due to the sinh term in thc numerator. If one expands

the sinh term in a power series onc may write
[ko l~o-z !  z"-I! ]

sinh k  h -z ! z -I! = k  h -z !  -1! +
o o n o QI

A  z -1! ' factor may bc pulled out of the cxpansio» cancelling out the

corresponding factor in thc denominator.

Schermann [42] i»vestigated the roots of cq. �.11! for thc case of

no damping  a and 8 real, in our notation!, llc found a finite n»mbcr

of real roots lying in the region

0,< x< l.

In a~!dition, he found an infinite number of complex roots. Ewing, et al

[, ] . in a discussion of Schermann's res»lts, conclude that the complex

roots dc not lie in the permissible Riemann sheet. Thc location of the

roots is discussed in detail in Appcndi x B. Thc effect of small damp-

ing is to pull the roots slightly off the real axis into the fourth quad-

rant for positive roots and into the second quadrant for negative ones.
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At tliis poirit we determine the Ricma»n sheet for the integrand of

eq.  S. 10! . Iic speci fy one tira»ch for cacti of t tic factors introducing

'I'}iis rives us a log irit hmi c siiigu1 iriry at = II. 4'«dr»w a cut from

II dow» th«»«gat ivt iiaagi»;iry ixis, «»~l slicci t~
1

-i~/2 < Arg II  y z!! < 3m/2.
G r

!i x additional branch points occur w!ien

a = 0,

a
0,

a -=  I .and

From eq.  S. 7}>! onc sees that thc corresponding bra»ch points are at

z = +I,

z = +ci

and z =+}',

h'e draw branc!i cuts as stiown in Figure 3. Itccal ling the expression for

a�, a and a from cq.  'S.7b!, wc write in the complex plane:
0

a = k  z -1!',

2 2
a =k z-!

G
 S. 12!

2 2a = 1;� z -P !, Appropriate branches of these quantities areand

taken by sct ting

-Tt/2 < Argf  z -1! '! < g/2,

2 2 I;-II/2 < Arg  z -iX ! '! < m/2

2 2
-z/2 < Arg  ." 4 ! ! < z/2.

This is equivalent to restricting the real part of a�, a and a to be
8

 '!brancti I>oi»t singularit ics. I'~'c start wi tl> the Ihuikel fu»ctioii tl " ty;!
0



Q D,
E 0

E Q
D S>

0

0



77

positive. The choice of these branches is consistent with taking the

positive square root for

a0 C -k0! in eq. �.8!.

llaving located the singularities of the integrand, we now select

an appropriate contour. Part of the contour must lie on the real axis,

as this part represents the Green's function eq. �.8! . Ãe may close

the contour with infinite semicircles in the upper or lower halfplanes

provided the path loops around the branch cuts. To decide which semi-

circle to take, we recall from eq. �.2! the integral form for the

llankel function appearing in eq, �.10!

-y z cosh u
ll  y z! = � e

0 r m o

�. 2!

lie express z along the semicircle as

z = Re = R cosB + i sinB!
iB �. 13!

where R is a positive real number  R ~ ~!, and B is the argument of z

measured positive counterclockwise from the positive real axis, Sub-

stituting eq. �.13! into �.2! gives

�! 2i e
-zy R cos9 cosh u RsinB cosh u

e
ll  yz! =�

0 r

du.

The first exponential term is oscillatory, where outgoing waves  with

respect to r! correspond to points in the first and fourth quadrants.

This is the reason for taking the branch cuts as shown in Figure

That is, the cuts represent a continuous spectrum of outgoing radiation

in the lateral  r! direction . The second exponential vanishes for

large R in the lower halfplane due to the sinB term. One then must

close the contour in the lower halfplance, where the integrand vanishes



78

exponentially along the arc for R -w ", This arc will not contribute to

the contour integral.

We may readily verify that the remainder of the integrand in

eq. �.10! vanishes along the lower infinite semicircle. The hyperbolic

functions degenerate to exponentials for R ~ . One then writes
1

k0 z!z ! z I!
e

2
 z � 1!

sinh[k  ll -z !  z -1! ]
2

N z

D z ! z -1!

we may apply the residue theorem [ 3 ] to eq, �. 10! giving

sinh[k  h -z ! z -1! ]
I

 z � 1!

  ! H�!
2 0 ~r

4z

2zi!  Res idues !, �, 14!

sinh[k  h -z !  z -1! ]
2

N z ! �!H  y z!zdz,
D z

where

I 0'u'I'8

r
O,e,I,B

2
 z -1!

as R -+ ". This clearly vanishes along the semicircle. We now draw

the contour as shown in Figure 4. The path of integration must loop

around the branch cuts to avoid crossing them. We take the loops very

close to the cuts to simplify the evaluation of the integral, The

portion of the path along the real axis is deformed slightly to avoid

the singularities at z = 0 and z = l. A slight deformation of the ori-

ginal path along the real axis is permissible as long as there are no

poles lying between the original and the deformed path. We denote the

loop paths around the cuts as p0, 1', l'I and p For the branch points

at z = 0, e, 1 and f3, respectively.

llaving determined the location of the singularities and the contour,
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and the Green's function term ari ses from eq. �. 8!. Equation  S. I4!

is a statement that the contour integral  consisting of the sum of the

segments along the real axis and around each branch cut! is equal to the

sum of its residues. Hle wish to find the Green's function, so after rc-

arrangi.ng eq.  S. 14! wc find

k H v!
G y,z,z.,z! [I + I + I + I � 2>ri! Resj.dues!].

0  x 1 P>

�. 14a!

,th
denote the i pole as z., where from the frequencv equation

1

D z. ! = 0.
2

�. 11!

.th
prom the residue theorem [ 3 !, one writes the i residue term by

multiplying the integrand of eq. �.10! by  z-z.! and taking a limit

as z-+ z., or
i

 Residue!. =  z-z. !
lim

1 Z+Z. j.
1

1
sinh[k  h -z !  z -1! '] 2

H  y z!z
 z -1! 0 z !

 S, 15!

The expression �.15! is an indeterminate form in the limit due to the

2
 z-z. ! factor in the numerator and the D z ! term [which vanishes for

z = z. from eq. �.11! ] in the denominator. 1'Ie apply L'Hospital's ru}e,

giving

Tal ing the contour integration replaces the improper integral along the

rea! line [eq. �.8! ] with a sum of four loop integrals and residue

terms. This may not appear to be much of a simplification, but the fol-

lowing discussion will show that the loop integrals, which are non-

singular i f the paths do not cross a pole, may be approximated by

asymptotic expansions. In addition, the residue terms are shown to be

an algebraic form in the frequency domain.

Ye start by developing the residue term in eq. �.14a!. Let us



sinh[k  h -z !  z -1! '] 2

2 0  Y z -1! ' � [~ z !]
 Residue!.

j

�. 15a!

'I'he residue terms are then simply algebraic forms in the frequency domain.
The discussion in Appendix ll shows that the number of residue terms is

large for the problem considered because of the high frequencies used.

The physical nature of the residue terms can be determined readily
by recalling that the poles lie in the range

6< X. < 1,

where z, = x. + iy.
i 1 '1

and y, is small and negative. The hyperbolic functions may be writtenj.

as trigonometric functions if damping is disregarded. For example, the
sinb term i» eq. �.15a! may be written approximately

I 1
[k  h !  x' ! ] ' ""[k0 h0 ' !   "'! 1 �. 16!

�! 2 ' iTt/4 r i
 Yz!= e e0 r i T|Y z.

r 1
�. 17!

 Y z.Ifor

Recalling that Y = k r one sees that the residue term is a wave spread-r 0

ing with a r ' dependence laterally, corresponding to a two-dimensional

wave. The exponential term may be written

2 2Similar expressions appear for the N z ! and D z ! terms.

Fquation �.16! indicates that the residue terms represent standing waves
in the vertical coordinate z. The residue terms radiate laterally  in

the r-direction! due to the presence of the Ilankel function in eq. �.15a!.
For large Y z.  far-field!, the flankel function may be written in asymp-r i

totic form [48]:



-Iy z. -ik rx. +k rv.
r i 0 i 0 i

e = e e �, 17a!

The last exponential term introduces a ~k cay or attenuation since > . is
1

negative. The radiative term represents waves propagating laterally at

speeds varying between c and c  for no damping in the subbottom! due
0 m

to the location of the poles. Qne may see this by defining a phase vel-

.th
ocity for the i mode as follows:

c. = c ix.
i 0 i

We may then write the radiative factor in eq. �. 17a! as
.vr

� 1�
-ik rx. C.

1 1e ' = e

which shows that the wave is propagating in the r-direction at a speed

C..
1

To summarize, the residue terms represent a modal or waveguide type

l~
of propagation laterally with a r ' spreading law. The damping in the

subbottom introduces wave attenuation laterally. Each term represents

a wave propagating with a distinct phase velocity c, corresponding to a
l.

pole z..
1

C. Integration Around the Branch Cuts.

We wish to develop expressions for the line integrals I, I

branch point at z = 0.

one writes the integral froml. ! I.ine Integral for Path Ip'.

eq. �.14! as

sinh [k  h -z ! {z -1! ']
I

 z -1! '
H  y z! zdz,D  2! 0 r

�. 18!

I and I appearing in eq. �. 14!. The paths p, F, p and p are indi-1 0' o,' 1

cated in Figure 4. We initiate the discussion with the integral for the



where the path is indi cated below.

z = -1s,

and along AB we write

1 2TT
z = -ise  S. 19!

2 2
Ke note that z = -s on both sides of the cut, so the integrand of

eq. �. 18! does not change when passing along I' from AB to CD. Inte-

grating along s gives us symbolically

I0 =   !ds +   !ds
AR CD

0 CO

  !ds+   !ds =0
K! 0

�, 20!

The contributions from AB and CD then cancel, resulting in I0 = 0.

The variable s represents the distance from the branch point. The path

is essentially two straight lines along the segments AB and CD, The

circular loop around z = 0 gives no contribution, since the point z = 0

is not a pole. The argument of the complex variable z increases by 2m

when passing from the segment CD to AB. Ne write for the complex

variable along CD the following
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2.! Path p; The path j' for the branch point at " = 1 is shown
1

below,

z = 1 � 3s

and along AB:  S. 21!

i 27T
z = 1-ise

Applying the change in variables gives for the quantity  z -1! the2

following:

1~ 1
 z -1! ' = f s! = is' s+2i! '

on CD and �. 22!
i~ 1~ ~1

 z -1! ' = -f s! = -is' s+Zi! ',

1~
where the positive square root is taken on s'. The quantity  z -1! '

then changes sign from one side of the cut to the other. This results

in a possible discontinuity in the integrand. One writes the integral

I 1 from eq. �. 14! after introducing the function f s! from eq.  $.22!

We again have two line integrals AB and CD. The circular portion gives

no contribution, as z = 1 is not a pole, One changes variables along

the two segments of the path, writing for the portion CD:
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 S. 23!

From eq. �.8! one sees that N[s,f  s! ] and D[s, f s! ] are even in

F s! =  z -1! . The integrands in eq. �,23! are then identical by
2 .2

inspection. The two integrals cancel, gi ving

I =0.
1 �.23a!

The results for the two branch points z = 0 and z = 1 indicate that

these are not true singularities. We now turn to the singularity at

Path V : The path of integration is sketched as follows:

Z m a

One changes variables similar to eq. �. 21! . On CD we write

z = 5-1s

and on AB  S. 24!1 2''
z = e-ise

and changinv, variables

sinh[-k  h -z ! f s! ] N[s,-f s! ]
T [y �-is! ] �-is!  -i!ds +



2 2 ';
The quantity  z -c  ! is discontinuous across the cut, so we write from

eq. �.24! for CD:

1. I, i.
 Z  X ! = Q S! = ls �1' + s!

and on AB �. 25!
2 1~ 1 i

 z -c  ! ' = -g s! = -is �io. + s!

Applying eqs. �.24! and �.25! to the expression for I gives, after
0

combining the contributions along AB and CD:

i   V z! >   ! - ~ !   !  n-is!  -i!ds,
z

where z =  c -is!.

2 2!g 2 2
The expression  z -a ! appears only in the N z ! and D z ! functions.

Eq  ation �.26! shows that only tho discontinuity in the integrand duo

to the chanpc of sign of g s! across the c»t contributes to the integral

TI>e quantity in brackets appearing in eq. �, 6! is odd in g  s!, so it

may be written in the following form:

t N [R s!] N [-g  s! j
DDgD s! ~>-g  s! �. 26a!

where G s! is even in g s!. Tho expression �.26! for 1 is well-
ot

behaved, since the path does not intersect any poles. This may be

integrated numerically, but further direct analysis cannot be applied

without introducing approximations. We discuss a high-frequency far-

field approximation for I in the following section. First we complete

the branch cut integral discussion by computing I

4,! Path T'~'. We sketch the path p as follows:
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The change of variables is similar in form to eq.  S.Z4!.

OnCD: z=g-is.

�, 27!
1 21T

OnAB:z=g-ise

2 2The discontinuity in the integrand now arise from the  z -8 ! ' factor

2 2
in the N z ! and D z ! functions. lie write along CD:

2 l~ 1~
 z -8 ! ' = h s! = is '�ig+s! '

and on AB  S. 28!
le ~1 1~

 z -9 ! ' = -h s! = -is �i5+s! '.

The integral I is similar in form to eq.  S.28!

2 2
0 0 >!   ! �! N [h  s! ] N[-h  s! ]

2 ' 0 DD~~~ ~ 7 DDDh s !0  z -1! '
�, 29!

where z =  g-is!.

The quantity in brackets is written, similar to eq, �.26a!, as

N [h  s ! ] N [-h  s ! ]
DD~~ � DD~ ~ !T �.29a!

where H s! is even in h s!.

To summarize, two of the branch cut integrals I0 and Il are zero.

The other two integrals are given in eqs.  S. 26! and �. 29! . To analyze

eqs. �.26! and �,29! further, we introduce a high-frequency far-field

approximation. This al lows us to expand the branch line integrals I
0

and I in an asymptotic series.

A roximate Evaluation of the Branch Cut Inte rais

In the expression for I [eq. �.26! ], we set
9

]y zi » I,

k0h0 << g !

r

 S. 30!

and



Equation �. 30! implies that

/y cx/»

r
0 7

z

and z

since y = k0r.
r

These assumptions define a radiation zone in the r-

direction. The first relation �.30! allows us to express the Hankel

function as fol lows:

-Y $
-ik r�!   2 !', iver j4  . !-l;  x e

r vtk r
�. 31!

ensure that the integrand decays rapidly for increasing s due to the
s

r
exponential term e in eq. �. 31!,

Lle apply eqs, �. 31! and �. 26a! to eq, �. 26! to yield

l~
sinh tk  h -z !  z -I! ']-ik  2 !-'., j. Tr/4 ot

71k r

1 j ]~
 o,-is! '�im+s! 's 'G  s!e ds,

where z =  u-is! �. 32!

The integrand may be expanded about s = 0 as follows:

1~
sinh [k  h -z !  z -I! ]

Z .. Z
1 I 2

 o is! �io.+s! G s! = a + a s + a s +
0 I 2

�. 33!

This expansion is uniformly convergent inside a circle of radius p in

the z-plane centered at z = m. The radius o is given as the distance

from z = u to the nearest singularity of the integrand of eq. �.32!.

Ignoring a remainder term, one may write I in expanded form using
3

eq. �. 33! as

where we have used the asymptotic expression used earlier in eq. �.17!

Sr the !]ankel function. The last three expressions in eq. �. 30!



RRecalling that k = <u/c, we see that the I contribution to the <'ree»'s
5 Q Q

function is a damped wave propagating in the r-directio» with speed c

We note that the contribution of I to the Green's function [eq.  S. 14a! ]

The expression for I given in eq. �.29! is treated in a similar

manner. The Hankel function is writte» in its asymptotic form for

z =  �-is! as fol lows:

-ik r -y s�! 2 !g iTr/4  !, ! -'-. l3 r
0 r Trkpr �, 38!

We expand part of the integrand in the form

2 I
sinh [kp hp z!!  z 1! ]

 z -1!
{g-is! '�i3+s! 'H s! = b + b s + b s +

0 1 2

�. 39!

using eqs, �.29a! and �. 38! . The integral I is then expressed approx-
8

imately as a descending power series in {kpr! similar to eq. �.37!:

-ik r ~ b P  n+3/2!l3 I n
 n+ 3/2!n=p  kpr!

  2 !'-' i7r/4
P Trk r

�, 40!

This result is similar i» form to the expansion for the Ic, integral,

-2
The first term varies as  k r! . The attenuation and speed of the

wave have the same form. We write for k~.

R . I
k  = k  + ik ,

I
where k is real and negative. One sees that the exponential term may

be written

-ik8r -ik r k r
e = e e �. 41!

is small relative to the residue terms for k r large due to the spreading

-2factor  kpr! .  Recal I that the residue terms spread as cylindrical
r

waves with an r ' dependence. !



where the first factor on the right-hand side governs the propagation

Since one may writea»d the second the at te»uat ion of the wave,

t»at the wave propagates at the speed c, t»c shear-wave8'

velocity of the subbottom,

L, The A roximate Green's Function

We write the simplified Green's function from eq. �. 14a! by

recalling that 10 and ll are zero:

k0H  z!
G  y, z, z,u! = [ I + I � 2zi I  Residues! ] .

r' >' <' 4' G
�. 42!

The residue terms may be written for large ~y z. in the following form
1 i

using eqs. �. 15a! and �. 17!

 Residue!. =   ! c c  k rz, ! c.,I 1l' 0 i i'
�.4. n!

where I
sinh k  h -z !  z -1! '  z -1! 'V z ! z

0 0

z=z.
1

The branch line integrals are written from eqs. �. 37! and �.40! as

-ik r a0I'�/2!� ';- ver/4 o, 0
 k r!

�. 37!

4 � ik r b0I'  /2! b lI'�/2!
I =   � ! e e

2 '; iz/4 + +

 k r!  k0r!
�, 40!

One may write the Green's function in the following form by combining

eqs. �.42a!, �. 37! and �.40! into eq. �.42!:

k = � !
g c

8

2 z d 2 z -1! ' � [D z ! ]
dz

a I'�/2!
+

 k r!
3



n2

� ik rz.

Zv<Z  kr.! c c. +
i=I

-'Xr a0I'�/2! air s/2!
+

L  k�r!

»0P   /2!»Il  ~/2!
+ +

 k0r!  k�r! '2 5/2

 .'. 43!
the high-frequency

ik!r
+ e

This result is the approximate Green's function for

case in the far field: i.e., for horizontal distances r much larger than

the other length scales in the field [see eqs . � . 17! and  S. 50!] .

The Green's function in the time domain may be obtained by l.ourier

synthesis using eq, �.38!. The synthesis is complicated, as each of

the terms in eq. �.43! is frequency-dependent. h'e note that the in-

clusion of damping makes the coefficients

c., i = 1, 2... iV
1

0 0 ]

b, b

frequency-dependent, as are the wavenumbers k and k>, In addition, wc
CL

note that the poles z. appearing in the residue term are frequency-
1

dependent whether damping is included or not [see Appendix BJ .

Pekeris analyzed the time-domain behavior of thc residue terms

for the two liquid layer problem [40], llis analysis is a special case

of this one, but the general features of his result apply here as well.

lie took a pulse shape in time of the form
-at

t>0

h t! =
t<0,

where a is a positive real constant. Pekeris performed the Fourier

synthesis for this pulse shape using Kelvin's method of stationary



phase. To the first approximation, the stationary phase treatment gives

-1an r dependence. Pekeris also took the next higher approximation valid
-5/6

near the stationary value of group velocity. This resulted in an r

dependence in the time domain. !le termed this type of wave the Airy

phase.

Other types of time dependence wi!1 give similar results. In

particular, a Gaussian pulse modulated by a frequency v is representa-

tive of the time dependence used in acoustic so«nding. We may write

h t! in the following form:

�  t/x! iu! t2

h{t! = e e {5.44!

where A is a parameter related to the pulse length. The Fourier trans-

form H tu! of eq. �.44! is:
A  M-Gap !

H v! = A{~! ' e

2

�.44a!

One may apply this pulse spectrum to eq. �.43! and apply the stationary

pose method to obtain the Green's function in the time domain in a

manner similar to Pekeris' treatment.

Further development of the residue terms is beyond the scope of

this investigation. The Green's function appearing in eq. �.43! is

too complex to be used for the intended application. In addition, the

assumptions used to obtain this expression place us in a far field,

implying that the acoustic receiver must be separated horizontally

many water depths from the source. This is inconvenient for experi-

mental work  e g., acoustic sounding!.

We terminate the finite water depth case developed here by noting

that the response consists of a large finite number N of modes corres-

ponding to terms in a residue series. These modes may interfere



31

constructively due to the presence of large parameters in the pourier

synthesis. In addition, contributions to the response are given by

the branch cut integrals. These terms die out rapidly due to their

representation as a descending power series in r, the leading term
-2

being proportional to z



VI. GREEN'S FUNCTION FOR THE SEMI-INFINITE LIOUID

OVERLYING A HOMOGFNEOUS VISCOFLASTIC HALFSPACE

A. Mani ulation of Integral Form

2-a0 z -z ! -a0 z +z ! NI g !
e + e

4~an DI C !G q,z,z,e! �.44!

where

2 2  2 4 N g!=ma  � -1!- � aa-a' 1 0 2 14
8 8

2

D  r! = ma   � - 1! � � aa + a2 2r, 2 4q
I 0 2 k4 cr 8

8 8

and m = o /o . Ffe have set a = a, etc. for simpl icity. The first term

in eq. �.44! is the direct wave; that is, the wave traveling directly from

source to receiver. This is evident, as this term is identical to the

Green's function for the unbounded fluid [eq. �. 16! j. The second term is

evidently the contribution due to the presence of the viscoelastic half-

space. The Green' s funct ion �. 44! may be writ ten in the form

�, 1!G=G +G

where G, the direct wave, is given by eq. �. 16!, and G, the contribution

due to tire solid halfspace, is written as

2H ! � 0 '!" ! '"I«!
G = e
� 1 4rra

D  c.

i9e develop an expression for the Green's function for a field con-

sisting of a liquid halfspace overlying a semi-infinite viscoelastic solid.

Tire Fourier-Bessel transformed form of the Green's function was given as a

special case of the result for the n-layered solid halfspace. The number n

of layers in the solid was taken as 1 and the liquid layer depth h was taken

to infinity. iUe write the simplified result from eq. �.44! as:



:5 fter noting that

 q! =D  r.! -2a
2 2

1 5

from eq. �.44! we decompose G into two terms as fol laws:
� 1

� 2!G = G +
� 1 � I

H z! e
� I 4v a

where

and

We note that G is in the same form as eq. �.16! for the Green's

function in the unbounded fluid.

To perform the inverse transform, we recall eq. �,38!:

G  r, z, z,e! = G g, z, z,v! JO  gr! gd<.

Performing the inverse transformation of G gi ves, from eq. �. 18!:

00 -ik R

H z! e
G = G J  gr!gdg = �. 18!

2 2
R= f z � z ! + r ]where

From eqs, �.2! ~nd �.38! we write

-a  z+z !
O

H v' e
-ik R

IJ u! eI  gr! ddt; = 4 R
I

� 3!

2 1~
h R = [  z + z ! + r ] '. The term G can be interpreted asw ere

I I

an image source term using an argument similar to mmSo erfe ld 's �9] .

The image source is sketched in Figure 5.

One may write the Green's function G in a form similar to eq. �.18!.
I
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'I'he Green's function can bc written «s the sum of three terms

the direct wave, the image source term;n>d a residual term. From

eqs. �. 1!, �. 2!, �. 18!l and �. 3! we wri te

-ik0RI
e

-ik R

H ~! e
G r, z, z,v! - G'  r,z,z,z!, �. 4!

R

where the residual term G' is

-a0 z +z
e

!

J  gr!  dZ.

Dl < !ap

Having obtained expressions for the direct and image source terms,

we now direct attention to the integral expression for the residual

term G' given in eq, �.4!. This integral is in the same form as the

Green's function for the fini te liquid layer /eq. �. 1! ]. IUe may

manipulate the integral form for G' similar to the development in

Chapter V. Using eqs. �.2!, we write for the residual term:

'0 e 0 !   aQ �!
H  r,r! qdq.

a0 0   2! 0
G'  r,z,z,z!

-H c !
�. 5!

G'  y,y,x!
a! 2 1~

�  x -1! 'y-H e!k z   2 2!', �!
H  y x! xdx,

4m  x -1!' 0  x !
1

�. 6!

where 2 2 2 2~ 2 2'-  2!   2 1
$�x 1
 4x  x -u !' x -9 !' +   2 2!<
~4

This result is expressed in nondimensional form using eqs. �.6! and

�.7!. In addition, a nondimensional ratio of length scales y = k0 z +z !'

is used



tl. Contour Integration

1..
- z -l! 'y

z
 z -a !'  "!11� y z!zdz

r
e

l >

 z -l!
2 j

�. 7!

D  z !
2

The contour of integration must be determined. The branch point singu-

larities of the integrand in eq. �.7! are identical to those in thc

preceding chapter. The poles of oq. �.7! are given by

D  z ! = 0
2

1
�. 8!

Solutions to eq. �. g! werc obtained numerically by Strick and Gins-

barg for the elastic solid; i.e., for e and 8 real and positive [S2]

They found one real root of eq. �,8! occurring at a wavenumber x
p

larger than 1', or

o. < 1< 5 < x
p

The root x of eq. �.8! represents a Stoneley wave contribution [8]
n

The points z = +-l are not poles. This can be seen from the Green' s

function given in cq. �.42! before decomposition into thc sum of t«o

terms. Solutions to the frequency equation �.8! with damping are dis-

cussed in Appendix C. The result for small damping is that the pole x

is p»lied off the real axis slightly into the fourth quadrant. The

complex pole z may be written:
p

X + ly
p p p

where y is real and negative.
p

The integral �.6! is improper -1»e to the presence of singu-

larities on the x-axi», 'l>1e choose to eral»ate eq. �.6! using contour

integration in the complex  z = x+iy! p! ane, as was done .in the preceding

chapter.. Ke write a contour integral from eq. �.6! as follows:
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'l'hc singularities of oq. �.7! then are similar to those in the

i>revious chapter, except that only one pole occurs farther out the x-
axis [see Figure 63 . The same contour may be used for the present

problem because of the presence of the ilankel function. The integrand

of eq, �.7! vanishes along the arc of a semicircle of large radius R

in the lower halfplane, as can be seen by inspection after recalling

that the branches for the quantities

2 2!; 2 z -c !',  z -1!',

I ' = � k G'  y,y,v! + I + I + I> = 2~i Residue,4v

k0ll v! r ' z ' rx 1
�. 9!

where - z -1! 'y
z 2 2

I ll  y l dz.
o',I 6 I � I!'0 �! 0 r

m,1,5

The expressions I , I , I represent line integrals around the branch

cuts for z = u, 1 and 8. Each line integral path is designated by

p respectively.
92

l<e may solve for the Green's function G' from eq. �.9!, giving

2 2and  z -6 '! ' are taken so that the real parts are positive [from

eq. �. 12	.

The contour of integration is shown in Figure 6. The contour is

identical to the one in the previous chapter except for the location

of the poles. The branch point singularity at z=0 due to the llankel

function is ignored as it does not contribute to the integral.

Iiaving selected a contour and knowing the location of the singu-

larities, wo apply the residue theorem to eq. �.7!, giving
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k H u!!
G'  y,y,e! = I + I + I � 2vi  Residue!

r' z' Az 1 m I!
�. 10!

 Residue! = H  y z ! c�!
r p p

l~
�  z -1!

e  z -u!'
p d 2 2

 ~ !!  < !!

�. 11!

where

c
z � z

t,'Hospital's rule has been applied to obtain the expression for c , as
P

in Chapter V for the residues. The residue term is a wave propagating

laterally due to the presence of the Hankel functi.on. We may obtain

further insight into this term by writing the Hankel function in its

asymptotic form for large ~y z ~. Ne have
r p

� ly z
fl�!  !   2 !'e ~4

0 rp Tfyz
r p

�. 12!

One may apply eq. �. Sb! to the exponential term, giving

-iy z -ik<rx kerry
e = e e �. 12a!

The first term governs the radiative behavior of the residue term and

the second is an attenuation. One may define a phase velocity c for
p

the residue term as follows:

 d
c

p k x
0 p

�. 12b!

We write the radiative term as:

ur
-ik rx

e
0 c p=e p �. 12c!

The Green's function is then the sum of contributions from loops

around three branch cuts and a residue term. One may write the residue

term as follows.



one may combine this with eq. �.12c! to obtain

�. 12d!

This result represents a wave propagating in the r-direction with the

calling c the phase velocity. Since the damping
P

speed c, vindicating
P

is usual.ly small, we may further discuss the behavior of the residue

term by taking

z = x
P P

I !! th i s case, the exponer!ti.al term in thc c express ion �. 11! reduces
P

!, ! 1
-  x -1} g -  x"-1! k  z + .!

p z p 0
e e

This represents an attenuation in the vertical direction, as x ! 1,
P

In addition, the Iiankel function �.12! introduces a  y x ! ' =  k rx !
r p 0 p

dependence to the residue term.

C. Branch Line Integrals

We wish to evaluate I , l and I given in eq. �.9!, The

procedure is the same as in Chapter V, although now the integrand is

less complicated algebraically. We evaluate first around the path p

changing variables using eq.  S.21!. We write the quantity

2 z -1! = f s! on the right-hand side of the cut and change its

sign on the left-hand side as in eq. �,22!. We combine the two

segments of the path I' into one integral in s as fol lows:

Recalling that the time dependence for the wave given by the kernel of

  I   ~ 9b!



f  s!y f  s!y
z z

e e

Dllf s!! Dll-f  !!
a H [y �-is! ]�!

o.0 r �-is!  -i!ds, �. 13!
f  s!

where we write Dl from eq. �.6! in the form

[f s! ] = mf s!P  s! + a  s!

and

p 2z 2 4z  z -m !' z -9 !'2 2 2 2'z 2 2

2 g4 z=l-is

One may manipulate eq. �,13! into the more convenient form

F2  s! �!
I = [f  s! F  s! + ] H y �-is! �-is!  -i!ds, �. l4!

0
where

2mP sinh fy !a
F  s!1 [ 2 2f2P2]

2
2a cosh fy !

z

2 222
[a-mfP]

and

We note that both Fl s! and F2 s! are even in f s!. The integral �.14!

is exact. In the next section, the integral will be developed in an

asymptotic series by applying some assumptions and approximations.

Vext, we turn our attention to the integral I . We change variables

us ing eq. �. 24! . Reca I l from eq. �. 25!

2 2g s! =  z -e ! on the right-hand side of the cut. The expression

for I is written using the same methodology:

2
- z -1! Y

z
e II  y z!  m-is!g s!G  s!  -i!ds,�!

r
�. 15!

 z -1!
2

where

Dl[g  ! 1 Dl[ g  !!

GI  s! D,[g  !!Dl[-g -!!
z =  o is!and
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One notes that G  s! is even in g s!. The expression �,15! is also

exact. Approximate results will be developed later.

Finally, we evaluate I . The change in variables is given by
l3

cq. �.27!. Ile write from eq. �.2S!

l.. I
 z -P 'I = h  s I = I s '�xP+! !

on the riglit-hand s itic of the cut. fI>c exact express ion for I is

written
CO

- z -1! 'y

 z -m !  8-is!H [y �-is! ]h s!H  s!  -i!ds,
e 2 2 ~g . �!

  1!'
0 r 1

�. 16!
where

D [-h  s ! ] � Dl [h  s! ]
h  s! H  s!

D [h s! ]D [-h  s! ]
and z =  9-is!

hJ
y=kr= � r.
r 0 c0

I~'e see that Hl s! is even in h  s!. Equation �. 16! will be evaluated

approximatel> in the same manner as the results for I and 1

'l'he Gree»'s fu»ct io» �. 10! has been expressed  in the fre<Iuency

domain! as the sum of three definite integrals; eqs. �.14!, �.15! and

�.16!, and an algebraic residue term, eq, �. 11!, The physical behavior

cf the residue term has been discussed. To gain insight into the definite

integrals associated with the branch cuts we must evaluate the integrals

approximately by introducing appropriate physical assumptions.

The most obvious assumption is to use the asymptotic expression for

the Ilankel function appearing in all three integrals. This requires

that the magnitude of the parameters y, ny and By be large. Takingr' r

these as large is eesenti ally a high-frequency assumption, as we may

write for y r'



I!coal I i!ii! e<I. �.  n I, we see i luis ! is n 1';ll tI! ot !' t<! The w;ivory 'tii'I lii'

<!f;i soiind wave in tl!c l i Iuid, Wc iiotc t Ii it botli ci ni!d I4 nr<' of tlie

order unity, so one m;iy say that the higli-frequency assumption implies

y r

�. 17!

and

�! 2 !. !. !, i>/4 Yr yr
H [Y � is! ] ~   !' Y '� is! ' c e e

0 r r
�. 18!

'I'Iie express i.on for l becomes for y» 1:
l ! r

'e e e � is!   i! f s!F  s! + ds
r 1 f s!

D
�, 19!

1=   � !
1

1, !~
Recalling that f  s! = is '�i-s! ' enables us to write eq. �. 19! in the

form:

2 '; -'; i'/4 r
� 1Y

I =   � ! y e e
1 TI

CG Cx3
� v s I re �-is!J e s '�i s! '� is! ' F  s!ds - j F  s!ds � 19a!

0 s '�i-s! '
-Y sr'

One notes for y» 1, both integrands decay rapidly due to the c
r

term provided F  s! and F  s! are properly behaved. We recall from

eq. �. 14! the expressions for F and F

2mP sinh[f  s!y ] a  s!
Z Q

F  s!
f s![a -m f P ]

2 222

�, 14!
2a cosh f s!y

Q z
F  s!

2 2 2f2P2

We begin by applying the high-frequency assumption to cq. �.14!

for 1 . We write the asymptotic form for the Hankel function as follows:



The sinh and cosh terms reduce to exponentials of the form

Y s
� e for large s, We must set
2

�. 20!Y ~Y�

 z + z ! 

wliicli, from 1:igure ~, implies t1iat thc 1iorizonta1 range must bc 1argcr

tlian the vertical range along the reflected path, or the angle of

0incidence must be less than 45 . The convergence of the integrals in

eq. �.19a! will improve as the ratio

r r

 
increases. That is, as we approach a near-bottom

or low incidence condition. We may expand the integrands about s = 0

if cq, �.1S! holds. We write the appropriate expansions as follows:
1 1 2

�i-s! '�-is! 1'  s! = b + b s + b s +

�- 21!aii d
�-is! ', 2F w!=c+cs+cs
�i-s! '

The expansions have a finite radius of' convergence in the complex plane

extending from the singularity z=l to the nearest other singular point.

Tle integration from s=0 to s=~ takes us outside this radius of. conver-

gence, so term-by-term integration of eq. �. 19a! using the expansions

�.21! will give a divergent series. One takes the first few terms

 at most! of the expansion, which will turn out to be an asymptotic

series in descending powers of the large parameter y . The first fewr

terms usually give an accurate approximation to the integral. An upper

for convergence of the integrals in eq. �.19a!. This second assumption

may also be writ ten as
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bound to the remainder term due to the finite radius of convergence is

obtai n«d by Van lier lUacrdon [.~6].

1V« formal ly introduc« th««xpan»ion» �, 21! into the integral

expressions giving:

2 ', -', iv/4I =  -! ~ y ' e e x
1

CO -Y s

!c s" 'e d
n

n=0 0

CO -Y sb  n+ g! r
n

n=0 p

�. 22!

Tiie definite integrals may be expressed as gamma functions from eq, �. 35!.

We write

-ly
2 '~ iz/4 r

  � ! e e X
1

I {n+ 3/2! ~ I' n+1/2!
n  n+2! C n  n+1!

n=0 y n=0 y
r r

{6. 23!

Now we evaluate explicitly the first term in each series, obtaining a

zeroth approximation to

2 ~ i v/4 r I I' �/2! I' �/2!
Y r

r

�. 24!

We note the values for the gamma functions of half-order [29]:

I'�/2! = vr'
1

I' �/2!
and

Equation �.24! reduces to

in/4 r 1 1'
2'e e b � � c

10 0 2 0 Y
2Y r

r

�. 24a!



From eq. �. 16!, one writes

b = 2' i F �!

�. 25!
l~ I

c� = ' ' F �!and

From eq. �. 14!, we evaluate F �! and F �! as follows:

2mp �!y

a �!
�.25a!

F �! = 2
2

Applying eqs. �.25! to the expression for I gives

� l.y

2e
r

10
r

imP �! z,y

az �! y

>i'e note that for y /y small, this reduces  to the first order! to the
z r

� ly -ik r
form r 0

-2e -2e

10ykT
r

�, 26!

The c� term is seen to be the predominant one. 'Ife designate the con-

tribution to the Green's function due to the I term as G', and

apply eq. �. 26! to eq. �. 10!:

H z!k -ik r

10 4v 10 4zr
�. 27!

Fquation �.27!, when combined with the expressions for G and G in

oqs. �. 18! and �. 3! for y jy small give an interesting result. On
z I

expanding G and GI for y /y « I, we have«XO I z r

-ik0r
H v! e

�. 28!
-ik0r

H u! e
G

I
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Combining eqs. �, 28! with �. 27! gives

G'+G+G=0
10 ~ I

�. 29!

2 '; i~/~ '"r' "r' '; 2I =   ! e e e s' b +bs+bs + ...!ds,
o, 'ny 0 1 2

r

�. 30!

-i  z � 1!
2 1 1 e

z

b + b s + b s + ... =  cr-is! �ie-s! G  s!
0 1 2

where

and z =  ct,-is!. The expansion about s=0 is valid only for the near-

bottom case  as for the expansion of I ! or

�. 20!y, < v,.

1t'e formally integrate eq. �. 30! term-by-term to express I as a series
0

with gamma functions

for y /y « I, or  z +z !/r << 1. This result shows that the source
z r

and image term plus the contribution from I cancel to the first order

in y /y . Ewing, et al. [9 ] discuss thi.s phenomenon for two liquid
Z I

layers. They interpret the effect as the cancelling of the direct wave

by the reflected wave at grazing incidence; i.e., the reflection coef-

ficient is -1. This is analogous to the limiting case of the Lloyd

mirror effect in optics, One should note that the cancellation occurs

only to the first order. Physically, the higher o~der terms arise as

the reflection coefficient deviates from its value of -1 at grazing

incidence.

To develop I in an asymptotic seri es, we apply the high-frequency
Q

«pproximation �.17! to the exact expression for I [eq. �. 15! ]. Using

the asymptoti c form for the llanI.el function al laws us to write for I
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� 3; iw/4 r ~ b 1' n+3/2!
n n

n=0 y  n+2!
r

�. 31!

-2The leading term varies asy, or  k0r! similar to the result in ther '

r 0 iv/4
e � �e

Y

1
I = 2

m0 �. 32!

The term b� in the expansion is obtained from eq, �.30! and �,1S!
1

- c -1! 'y
z

b =e2 i e
0

�. 33!

Gl �!,
 a -1!-

where

-2i
G �!

2m�-cx ! '  �" � 1!

Comb ini ng eqs . �. 32! and �. 33! gives for I
u0

l.
-i l-N ! 'Y. -iy o

z r
0 e

� 2 1 x
! o.0 2 2 2 2

�-a !y m� � -1!
r 6 2

The corresponding contribution to the Green's function is obtained from

�. 34!

eq. �. 10!
k�i{ v!

G' I
a0 4' a0.

�, 3'5!

We write the Green's function contribution as follows:
~1

-i f k -k ! ' z +z !+k rj
0 o, > < e

etI  u!
A>0 4m

-2ia �. if!!

2 2Q 2
2

krm  � -1!
0 ~2

preceding chapter  eq. �.37!] . We recall that the term y o, in the expo-r

nential factor may be written

Y + = k r, so that I term represents a wave associated with the
Ct A.

longitudinal wave in the subbottom. The leading term in eq. �.31! may

bc calculated explicitly as follows:



This branch line integral represents a wave traversing the path shown

-2
in Figure 7. The wave spreads with an r factor. The exponential

factor introduces attenuation for complex k . To further discuss the

nature of this wave, we consider the no damping case  k and k real!.

Recalling that k = <o/c, we write eq, �,36! in the following form:

-ik0[ cos8 ! z +z !~ sine !r]
�. 363!

f3   u! 1 0
ct0 4z  i a! 2

rm  � - 1!
g2

where

sino = a= c/c
c 0 a'

2 2-i[ k -k ! ' z +z !+k r]
�. 36b!

2ik
Q-H  m!

m0 4z 7
r m

2

 k -k !  �,� 1!2 2 Q 2

0

8

The angle e denotes the so-called critical angle of incidence. The
c

path of the wave as shown in Figure 7 is more apparent upon writing

the exponential in this form. The wave is referred to as the 'refrac-

tion arrival" since the wave traverses laterally at the speed c along

the surface of the solid bottom. This wave is the first to arrive at

the receiver since c > c; i. e., for a "fast bottom". Ewing, et al.P 0

[9 ] discussed a similar wave occurring for the two liquid case. The

-1
$z! factor in eq. �.3la! implies that the refraction arrival is

dispersive in the sense that the pulse shape h t! is distorted at the

-1
receiver. The form of the frequency dependence [ ie! ] represents an

integration in the time domain, so this wave exhibits the "tail' seen

in two-dimensional wave propagation. |<e close the discussion of the

refraction arrival by writing eq. �,36a! in its dimensional form



1 1 .i

E IUM 0 W K a Q
gJ
tX 4!

M Qp
u.
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eq. �. 16!:

2 -'- -'- 'yr i~/4 '; yr' 2I~=   � ! y e e s'e  d + ds+ds + ...!ds, �.37!
D

2- z -1! 'y

 z -u ! ' g-is! '�Pi-s! 'H  s!
�1!~ 1

where

d +ds+ds +
2

0 1 2

and z =  8-is!. The expansion of the integrand has a finite radius of

convergence, so the result of the formal term-by-term integration of

eq. �.37! will be another asymptotic expansion in descending powers

of Y . The integration gives us the following series:

r iv/4 ~ d I' n+3/2 I
p

n=0 y  n+2!
n

r

�, 38!

This result is identical in form to eq, �.31!, Tne exponential term

governing the propagation of this wave may be written

-iy 8 -irk8
r

e = e, so one sees that this wave is associated

with the shear-wave in the subbottom. We compute the leading term in

eq. �. 38! as follows:
-iy l3

iran/4 ej. r

�0 2 0'
Yr

�, 39!

where  82

d =  g -e !'2 gi' H �!
 8 -1! '

This result agrees with llonda and Vakamura's [15 ] result [their eq, �7! j

for a liquid over an cln»tic halfspace. Our result differ» in that a

general tive dependence for thc input pul»c is included in thc tl «~!

factor, and damping is implicitly included by taking k and h as complex.
0

'1'he integral I is developed in a similar manner. Ne write I from



and
2 !! 2 2 '-

�! 8m 8 1!  8  x !
8 [m 8 -1! " 8 -~ ! ']

Simp li fying the above gives

-y  8 -1! -iy 8
2 -'-2

r
e e

2 2
-8i 8 -u !m

80 �.40!
1.

y,8[  8-» " 8- ! ]

'H>e Green's function contribution is written from eq. �, 10! as follows:

2

H e! 8m 8 -m !e
2 2 z

-y  8 -1! -iy 8
e

r

80 47', ! !
k r [m 8 -1! '+ 8 -o, ! ']

8

�, 41!

'I'he no damping case for G' is written  recalling that k = u/c !:

-y  8 -1! ' -ik r
8c m 8 -cr, !e e

!� !w, 2 2 z 2 2~2
 i!!!!r [m 8 -1! + 8 -m ! ']

�. 41a!

1~
The shear velocity c is less than c, so the quantity  8 -1! is

positive and real. This indicates that exponential attenuation occurs

in the vertical  z! direction due to the first exponential term. The

-2
mve propagates radially with the shear-wave speed c with an r depen-

� 1
Ence. The  im! factor implies that this contribution to the response

We write eq, �. 41! in dimensional form as follows:
1

- z +z ! k -k !'
8im k -k ! e -ik8r

r k [m k -k !'i k -k !']
�. 41b!

integrates the pulse shape in the time domain. We note that the subbottom

is "slow" with respect to the shear-wave velocity  c8   c !. This rules
0

o!t a refraction arrival path similar to Figure 7. Instead, one has a

wave bound to the liquid-solid interface radiating laterally similar to

the Stoneley wave.



This result agrees with Honda and Nakamura's equation �1! [IS ], except

for the more general time dependence. Again, the effect of damping is

implicit in our result due to the complex nature of k and k
5

D. Summary for Low Incidence Case

�. 11! and �. 26!:
k H z!

 Yr~ Y ~M! 4

Zm11 yz!c+ I + I + I +�! �.42!

where
-ik r

� Ze

10 k r

The first term is the Stoneley wave, and the three terms [10, I 0 and

are leading terms in asymptotic exnansions for branch cut integrals.

'1'he net response G is written for the low-incidence case by applying

cq. �.42! to eqs. �.1! and �.2!

G=G+ 0 +G'
co [

k H z!

4z
[ZvriH  yz!c + I + I +

0 r p p ot0 50
�, 43!

where the G and G terms cancel with the I term  to the first order!
CO I 1

from eq. �,29!.

The net response, then, is composed of three types of wave: a

surface wave  Stoneley wave! given by eq. �.11!, a refracted wave

[eq. �.36!], and another surface-type wave given by eq. �.41!.

l e summarize the results for the high-frequency, low incidence

 near-bottom! case by writing the first-order response G' from eqs. �.10!,



t-:. Stee est-Descent Inte ration

The results of the preceding section [eqs, �.42! and �.43!]

are applicable for low incidence angles or near-bottom testing where

the ratio y /y is small. The results can be extended to moderate
z r

values of the y /y ratio if higher-order terms are computed for I
z r

I and I as indicated in eqs. �.22!, �. 31! and �. 38! . Computation

of higher-order terms requires considerable algebraic manipulation where

complicated expressions must be expanded in power series about s=0,

as indicated in eqs. �.21!, �.30! and �.37!. The expansions have

tinite radii of convergence, so all the integrals give divergent series

in descending powers of the large parameter y . This type of series
Y

is an asymptotic expansion, as has been discussed earlier. Usually,

the first few terms of the series gives accurate res~Its for suffi-

ciently large values of the dominant large parameter. At some point in

the expansion, the terms start getting large, causing the series to

diverge. The series is usually truncated just before the terms start

diver ging.

The algebraic difficulty in computing higher-order terms for the

branch line integrals, combined with the uncertainty of convergence of

the series prompts us to evaluate the Green's function G' given in

eq. �.6! using another approach. We apply the method of steepest

descents [ 4 ] p [2p] to evaluate the Green's function. This method en-

tails deforming the original path of integration in the complex plane

in such a way that the integrand is significant for only a small region

in the new path of integration. To apply the method to the integral

given in eq. �,6!, we first express the Green's function in the complex

plane by substituting z=x+iy for x and denote the deformed contour as I'
s



G'  Yr, Yz,<!

- z -I! y2

 y z3<dz.
 z -1] D  z !

1

-H  u!! k
�.44!

where

D  z ! = m z -1! [  � - I! - �  z -0!  z 8! ]+2 2 Q 2z 2 4z 2 2 4 2 2 4 2 2 g

1 g2 e4

The path P is as yet unspecified, We now apply the high-frequency assump-
s

tion by using the asymptotic expression for the fIankel function [see

eq.  S. 17! ]:

"0  Yr'! =  ~ z!�! 2 g im/4 r
z

�.45!

We may apply eq, �.4S! provided the path I' does not lie near the origin

where j z ~ is small. Substituting eq. �.45! into �.44! gives

Yr'Yz'>!

We introduce the angle of incidence 8 by defining, from Figure

�. 47!

We may write for r and  z +z ! the following.

r R< sine,
�.47a!

 z +z ! = Rl cose
7

where R is given in eq, �.3! as

R = [ z+z! +r]
2 2 Q

I

-H g!k
  ! e
"Yr

r "r
tanB =

 z +z ! z

2 24 4 -i[Yz+�-z ! y ]2 4

 z -1! Dl  z !2 2

�.46!



We write eq, �.46! using these results as follows:

G' y,,y,,~! =

2 2 4 4 -ik0RI [z sin8+�-z ! cos8]2 Q

 z-1! D  z!
2 2

1

-iI z! k

4F '  y!
�.48!

-H v!k

4x   ! 's �. 49!

where

2- 2 q ~ ylf z!
I e

 z -1! D  z !

and f z! = i[z sin8 + �-z ! cos0].2 4

We assume now that the parameter yl is large, or

�.50!y»1.

This defines a radiation zone in the liquid field. To determine the

steepest-descent path I' we compute the point of stationarity of f z!,
S

the factor in the exponential of the integral I . This is defined by
s

�.51!= 0.f'  z!
z z0

The point of stationarity z is then given by the relation
0

Z 0
tan8 = �. 5 la!

z0

We may also write, from eq. �.5la!:

sin8 = z
0

�. 51b!

cos8 = �-z !2 0and

The parameter k R may be written as y, a ratio of the path length of the0 I I'

reflected wave to the wavelength. We write eq. �.48! in the form
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We now expand F{z! about the point z as follows:

f z! = f z ! + f  z ! �  z z ! +
1 2

0 0 2! 0
�.52!

where

f z ! = i
0

-2
f"  z ! = -i[cos9]

0
and

'We write f  z! to the second order as

 z-z0! 2

f z! < i
cos 0

�. 52a!

Applying this result to eq. �.49! for I gives
s

 z-z
I  z -<x ! ziY 2 2 , < iy ' 0'

I
r, c

I'  z -l! ' Dl z !
�. 53!

Now, the path I' is defined near z0 by transforming the exponential
S

2factor  z-z ! to a real negative quantity. For the path I'
s

2cos 9

near z0, we write

 z-z ! = re 1Q
�, 54!

for two liquids. The integral I then becomes approximately
s

-r  2!
2cos 8

e dr

-iy  z - x !' z

 z -1!' D � !

2 2 z
1
2YI �>!

e ~> >   � ! cos9,
 z -1! ' D  z ! I

{6,55!

where we have used the result f 37]

where n must be v/4. A similar path is used by Landau and Lifschitz {25]



r 2 2-a x Tt -'2
e dx =   � ~!

We write the approximate Green's function from cqs. �,55! and �.49!

1. z -eP! '
�. 56!

2
D  z !

where we have used the relations �.Slb!,

The result is given a more useful form by adding the image source

term G to G'. From eqs. �. 2! and �. 3!, we have

-ik R

H z! e
1 I 4v R

 G. 57'1

where
2 2 2 2'. zp! Dl  z ! 2  z - o !

0

Equation �.57! is the expression for the reflected wave. It has the
� 1spherical spreading factor R, and propagates along the path shown in

Figure S at the speed co. The quantity in brackets  NI/DI! represents

the plane-wave reflection coefficient for an acoustic wave reflecting

off a solid halfspace. The reflection coefficient is a function of the

angle of incidence, as we recall from eq. �.51b!:

z = sinH.
0

�. 51b!

The result �,55! applies for a limited range of the angle of

incidence. Referring to Figure 8 and eq. �.51b!, we see that the

point of stationarity z> varies with the angle of incidence 9, The

deformed contour I' appears as in Figure 8a for low angles of
s

as fo I laws:

G'  yl,B,<! 4
-11 ~! 2 I

I

iN  z�!
2

Dl  zo!
2
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a! No Refracted l~'ave  ~.'-,.0 !
C

b! IVith Refracted slave �>0
C

P IGURf=' 8

Steepest Descent Paths: Radiation Zone
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incidence. If the angle of incidence increases beyond a critical

angle 6, the path I' must loop around the branch cut for z=e, as

shown in Figure Sb. The critical angle 0 is given by the relation
C

�. 58!z = a = sine
0 c

for no damping, or
k

0
sin6

c k

c0
C

�. 58a!

When damping occurs, the critical angle increases because the point z=u

lies off the real axis. For small damping, the critical angle occurs

when +[k!
sin&

c k
�. 58b!

We may write for the response G' the following:

G' YI,O,<! � 4 R
H ~! 2 ~I

4z R
�. 59!

since the path I' is inclined 45 from the real axis near z . The0

s

result given by eq. �.56! is valid only for 6 < 8, where 8 is given
c c

by eq. �.58b!,

For angles of incidence greater than 6, one must include the con-

tribution to the integral due to the loop around the branch cut for

z=<x. This loop integral has already been calculated to the first order

as G' in eq, �,36!. We recall that this term represents the refraction

arrival. The result G' is valid provided the angle of incidence is well

away from the critical angle. The loop integral has finite limits, as

can be seen from Figure 8b. If 9 approaches 0, the finite limits must
c

be taken into account.
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�, 36!, andwhere G' is given by eq.

0! 0.
c

Combining the G' response with the image source term G gives

-ik R

e1  ! + G'
m0

�.60!

D  z !
2

G = G + G1'
�. 1!

The net response in the radiation zone for moderate angles of incidence

is co~posed of the direct wave G, ':q. �. 18!, a reflected wave given

«s the right-ha»d side of eq. �.56! and the refraction arrival G'

given by eq. �.36!, The refraction arrival occurs onl> for

0 0

where 0 is given in eq. �.58b!,
c

for 0 ! 0 . This result is similar to eq. �.57! for 0   0, except
c c

that the refracted wave term G'0 has been added due to the loop around
m0

the branch cut.

From eq. �.1!, we see the response in the sum of the direct wave

G and Gl, or
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K'l I, S !! DIARY AK ! C !NCLl S I !NS

A. Summa ry

Expressions For thc acoust ic rcsponsc in the frequency <lomai» have

been ol>tained for the n-layer viscoclastic halfspacc. 'Ine response is

expressed in integral form. The n = 1 case  a homogeneous solid hal fspacc!

has been i»tcgratcd for both finite and infinite depth of thc overlying

liquid la! er.

A discussion of thc problem and a brief survey of related work is

prcsentc<! in Chapter I, Thc nature of thc se<limcntary s»bbottom in

shul lo» < »ter is summari "c.l i» 'I'able I   rom llami lton's <1ata!. 1'hc

et feet <>f dampi»g;>roccssc.. in t'h e subbot tom is <li scu s<.<1, with the

res«lt that the bottom may be considcre<l an clast i.c sol 1.<I wi th super-

imposed damping  i>oigt vi scoelastic mo<lel!.

The anlaysis of thc problem starts in Chapter II. The co~servation

laws a»d an entropy production i»eq«al i.ty are presented as thc governing

equations for the media. A discussion of the lincari..ation process is

then g!.ve». The lincari ation is based on small disturbances  wave

 ro»ts! superimposed on a uniform eq«ili!>rium or ambient state.

Thc constitutivc equations are developed for thc viscoelastic

solid undergoing small de formations using an energy approach. The

equation of motion governing the mechanical field is given as eq. �..'>0!,

I:allowing this, the equation of motion for thc invi scid fluid is shown

to bc a special case of the clastic  undampc<l! solid. A wave equation

�.;>7! i s derive<! using a» equation of state for the pressure, Thc

acoustic wave propagation speed is shown to bc related to an iscntropic
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elastic modulus and to a thermodynamic derivative.

The vector field equations �.50! and �.51! are simplified in

Chapter III. pirst the discussion is limited to the elastic field

equation  no damping!, The displacement is decomposed into longitudinal

 curl-less! and transverse  divergence-less! parts. This separates thc

eq«ation into two wave operators for each po1ari zation. A courier

transform in time is then introduced which rcd«ccs thc wave operators to

11clmholtz operators. Then sol«tions to the homogeneo»s forms  no

source terms! are developed using a scalar potential function for the

longitudinal field and a vector potential for the transverse field. The

discussion parallels closely the classical electrodynamic wave

propagation problem [32] . One obtains for cylindrical coordinates

expressions for three polarizations: one longitudinal and two transverse

[eq. �.20!]. Each polarization is expressed in terms of a scalar

function satisfying a scalar 1lelmholtz operator.

Thc viscoelastic medi»m is then disc»sscd. After applying thc

Fo«rier transform, onc finds that the field equations reduce to a form

identical to the elastic solid. Each polarization is governed by a

11c lmholtz operator [cqs. �.24! and {3,25!], where the wavenumbers are

complex quantities instead of real due to the prcscncc of damping terms.

llomogeneous forms are used for thc governing equations in the

solid. The field excitation occurs in the overlying liquid l.aycr, so

an inhomogeneous form  with source term! must apply in the inviscid

liquid. The source term in the liq«id is taken as a localized,

longitudinal disturbance representing an acoustic transd«ccr. Thc

disturbance is modeled as a point source with an arbitrary time dependence



for the strength. The acoustic response to the source is then the

system Green's function, which is governed by eq. �.3 >!.

The stress and displacement fields for the cylindrical coordinate

system are developed in terms of the scalar potential functions for

each polarization, These expressions are used in the sequel to evaluate

the boundary conditions at each interface between media.

In Chapter IV the solution to thc boundary-value problem for

arbitrary layers in the subbottom is developed. The response is

ohtai»ed from cq. �.36! using a formal Green's function treatment [50],

II1] where a Fourier-Bessel transform is applied. The transformation

reduces the governing equation to an ordinary differential equation in

one dimension. Thc Green's function for the unbounded f'ui J is obtained

h> matching boundary conditions at thc liquid-solid interface.

Tuc pote»ti aIs in thc solid are written in a form �.22!

compatible with the Cjreen's function. t:oundary conditions arc applied

at «n arbitrary solid-solid interface. These boundary conditions

arc then expressed as a recurrencc relation �. 3na! . successive

np~~llcatio»s of the recurrc»ce relation enable one to express the

potentials in the first solid layer in terms of those in thc last

teq. �.31!]. Then the acoustic field is matched to the first solid

layer to obtain eq. �.33!. Thc acoustic potential is obtained as a

Green's function using the recurrencc relation. The transformed

solution for arbitrary layers is given in cq.  d.37! . Special cases of.

eq.  $.3S! are obtained for a single solid layer, a» infinite liquid

laver depth and a comb.i»at ion of both in cqs.  -1.4»!, �,41! and  l.42!,

respectively.

In Chapter 7 the acoustic response is obtained For the First
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special case: the single solid layer, a halfspace. An integral form is

obtained by taking an inverse F'ouri er-Pcsscl transform. The integral

form is manipulated into a form morc convenient for contour integration

by introducing a llankel function in place of the l<essel function and

changing thc limits of integration. Thc expression is then written in

nondimensional form in eq. �.8! . After a di scussion of thc branch and

pole sing«larities, a contour is selected and the residue theorem is

applied. The Green's function is then expressed in eq.  S.14a! as a sum

of rcsiducs and linc integral s around each branch cut. Thc significance

of the residue toms is discussed and each branch linc integral is

written as a definite integral in exact form. Thc branch line integrals

arc evaluated approximately by considering the high-frequency far-field

case. Lach integral is cxprcsscd as an asymptotic series in descending

powers of a large non-dimensional parameter. Two of the branch line

integralsvanish duc to the nature of thc integrand.

The final result is given in eq. �,42!, whore one has three

expressions: a residue series and two asymptotic series for thc branch

linc intcgrals. The residue series has many terms due to the large

number of poles of the integrand, The poles arc frequency-dependent,

making the residue series highly dispersive. Thc discussion is concluded

by observing that the response is too complicated for further analysis

for the present problem. Thc large number of residue terms and the

required root search make computations too cumbersome. In additio,

the expression for thc response is only valid in the far-field due to

assumptions made in the evaluation of the branch line integrals.

In Chapter VI, thc case of the semi-infinite liquid over thc

homogeneous solid halfspace is developed. The Green's function is



written as the sum of a direct wave, an image source term and a residual

term in cq. �.4! . 'l'hc direct wave and image so«rce terms are readily

obtained from Sommerfeld's results [46], [49]. Ne integrate the residual

term using the same procedure as in the preceding chapter. The result is

given in eq. �.10! as the sum of three branch line integrals and a

residue term. The residue term represents a damped Stoneley wave [8! . In

a discussion assuming small damping, the Stoneley wave is shown to propagate

laterally along the liquid-solid interface with a cylindrical spreading

law. 'I'he effect of the wave decays exponentially as the distance from thc

interface,

1-:xpressions for the branch line integrals are given in eqs. �,14!,

�.15! and �.16!. These are expressed as asymptotic expansions for the

high-frequency case in eqs. �.23!, �.3ll and �.38!, These waves are

irterpreted as reflected and refracted waves after computing the first term

in each series. The first term of eq, �.23! is given in eq. �.26! . A

discussion of this wave shows that it cancels to thc first order with the

direct and image source terms, corresponding to cancellation of the direct

wave by the reflected wave at grazing incidence. The branch-line integral

�.23!, when combined with thc image source term, is then interpreted as

thc reflected wave. Thc other two branch line intcgrals are discussed

after computing the first-order terms in each expansion. The first-order

contributions to thc Green's functions are given in expressions �.36!

and �.41!. Thc first contribution is interpreted as a rcfractcd wave

traveling along a path shown in Figure 7. The second i.s a modified

refracted wave propagating along thc interface and decaying exponentially

as thc distance from the interface,
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These results arc restricted to grazing angles of incidence due to

a cnnvcrgence condition on the 1>ranch line integral s  eq. �.20!] . An

expression for the response is ol>tained for moderate angles of incidcncc

bv applying the method of steepest descent. '1'he original path oF

integration along the real axis is replaced with the onc show~ in

Figure 8. One obtains two results for the Green's function; eqs. �..'>7!

and �.60!. The first is valid for angles of incidence less than a

critical angle defined in eq. �.58b!, and the second for angles larger

than the critical angle.

One sees that the response is the sum of the direct wave, a reflected

wave and a refracted wave which appears only for angles of incidence

greater than the critical. '1'hc steepest-descent result is valid for

moderate angles oF incidence not too near the critical angle in the

radiation zone or high-frequency regime.

B. Results and Conclusions

The primary results of this study are the expressions for the acoustic

response given in Chapters V and VI for the liquid layer and liquid

halfspacc, respectively. The predominant response in the liquid layer

was found to consist of a residue series, each tern representing a mode

of 1>ropagation, This result was shown to be inconvenient for modeling

acoustic sounding. late then developed in Chapter VI thc response for

infinite depth of the liquid layer, a case of interest when water surface

reflections are not important. After a discussion of the signi.ficance of

the high-frequency far-field approximation, the response was shown to

consist of the sum of several types of waves, each of which was associated

with a singularity in the complex plane, Lach type of wave was interpreted
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its asymptotic series representation.

Two cases were considered: near-bottom grazing incidence and moderate

angles of incidcncc. In thc first case the reflected «avc was shown to

cancel with the direct wave  to the first order!. Two types of refracted

wave occurred. Onc was associated with the compressional or longitudinal

wave in the subbottom, traveling in a path indicated in Figure 7. Thc

second one was associated with tlic shear or transverse wave in the subbottom.

Tliis was found to be a «ave propagating along the interface, decaying

exponentially in the vertical direction. Another wave, the Stoneley wave,

occurred due to a pole singularity. This was an interface wave that

spread laterally like a cylindrical wave.

For moderate angles of incidence, the steepest-descent method of

integration was applied. I!ere thc response consisted of the direct wave,

a reflected wave and a refracted wave appearing only for anglos of

incidence greater than a critical angle.

These results provide physical insight into the subbottom identification

problem discussed in Chapter I. The insight is especially useful for

designing acoustic sounding experiments and for analyzing data. The grazing-

incidence results s!iow that one may directly obtain information on the

compressional wave propagation in the subhottom by observing tlic "first

arrival time" associated with the refracted wave traveling the path

shown in Figure 7. This technique, called "refraction shooting", is

commonl> used in offshore petroleum prospecting. The shear-wave

propagation in t!ie subbottom can bc determined indirectly by observing

t!ie damped Stoneley wave, This technique has been used by ! amilton [Ill� .
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Iiis model for the Stoneley wave, described in Reference [2!, does not

systematically take into account the three-dimensional nat»re of the wave

or the effect of damping, These effects w<.re explicitly included in the

present study, lie concl»de, then, that near-bottom grazing incidence

testIng can yieM information directly or in<lircctly on thc wave

propagation  inc1uding damping! in the s»bbottom.

Oblique incidcncc sounding can also yield information on thc

subbottom. The feasibility of this approach has been demonstrated by

Brcslau [I], as mentioned in Chapter 1. Thc resu1ts obtained here show

that morc refined information may bc obtained through inclusion of damping

and use of a range of incidence angles.  Bresla» was concerned with only

normal incidence. !

The res»its of Chapter Vl can then bc used to design arrays of

aco»stic transducers and for analysi s of <Iata. Specifically, comp»ter

st»<Iies may be performed using numerical data from I[ami lton's results

 Table I!. Since consistent damping data is not available, one must infer

the effect from in situ data.

In Chapter IV the acoustic response was expressed in integral form

for a subbottom with an arbitrary number of paral lel la>crs. Due to

algebraic complexity, this integral form was evaluated only for the single-

laycr case in the succeeding chapters. The general result, however, is

new and provides a means for investigating sub-layering effects, Two

approacI<cs can be used: direct computer studies in which the integration

is performed numerically, and a combined computer -analytical study in

which the integral form is expressed as a series of residue and branch

linc integrals. Thc second approach is a generalization of Chapters V

and VI. The algebraic complexity of the intcgrand for more than one
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layer in the subbottom precludes the direct calculation of the residue

term and the branch line intcgrals. llowever, the calculations may be

performed on the computer quite readily.

Some insight on the sub-layering problem was obtained by,lardetzsky 11<>] .

lie found that the only branch line integrals contributing to the response

were those for the singularities in the last layer, the halfspace. The

branch singularities in the intermediate layers did not contribute due

to the Form of the integrand. The response for the morc general case

will then consist of two branch line integrals and a residue series. The

response may be obtained by an appropriate root search using numerical

techniques and by computing numerically the two branch line integrals.

i'hc steepest descent method may also be applied to the multi-layer problem

for the infinite water depth case. The integrand is moro complex. but

the procedure paral leis closely the development in Chapter VI .

In Chapter III the field excitation occurring in the liquid was taken,

after a physical discussion, as a point monopole source. A Green's function

formalism was introduced conveniently since the acoustic response due to

the point source can be considered to be the system's Green's function,

The formalism was applied systematically to the multi-layer problem in

Chapter IV. 'I'his problem is ideal for application of the Green's

Function formalism due to the type of field excitation, the shorthand

notation and the systematic nature of the computational procedure, I'his

study appears to be the first where the Green's function formalism was

applied to multi-layer problems. The geophysics literature  cf.

I<eference I5]! develops the response hy computing acoustic potentials

separately above and below the source in the liquid. The field excitation



in the liquid is taken into account by adding a source term, the form

oF whicli is obtained From Sommerfeld's [46] result. '1'hc Green's

function formalism combines thc two expressions For the potentials

above and below the source using reciprocity. In addition, the field

excitation is taken into accoiint by the use oF an inhomogeneous form

 ' point source! for the acoustic field equation.

C . Rc co mme n d at i ons

Further development of thc results presented is required for solving

the sui>bottom identification problem. The immcdiatc work must combine

numerical or computer studies with experimental results. home general

conclusions must he arrived at concerning the natiire of suhbottom

dampi»g. In addition, the effects of. sub-layering must be determined.

T!iis study provides t!>e necessary models for interpreting experimental

data o!itained to determine these effects,

Hie following areas of study are recommended:

1. In situ acoustic sounding at grazing angles of incidence

 near-bottom testing! using the results of C!iapter VI as a model for

interpretation of test data. Predicted pulse shapes may !ie obtained

For representative bottom types using liami lton's resiilts and Fourier

synthesis. Comparison of test data with predicted pulse sliapes may be

made using coring data for the site.

2. Computer analysis of the effects of sublayering using the

results of Chapter IV, coring data for representative sites and

1!amilton's results,

3, Computation of hig!ier-order terms in tiic expansions in

Ciiapter VI. Also further analysis of be!iavior of the integral form for



mathematically pathological cases where singularities lic close

tovethcr in complex plane»sing the approach of Van lier !<acr«en [5 i].

Thc case where the angle of incidencc approaches thc critical angle is

of particular interest.

4. I'urther analytical study of thc mechanism of damping for

unconsolidated sediments combined with an experimental program in the

laboratory. The experimental program might bc performed in the »ltra-

sonic frequency regime to reduce the size of the experiment.

Further development of the modeling is highly dependent upon

experimental results, as guidance is needed to determine the direction

of further analysis. >lore specific recommendations cannot be made

without further insight from carefully designed and executed experiments

carried out in the field.

Other factors not considered in this stud> may be significant.

These include random inhomogenicties in the media, non-parallel and

non-planar layering str~cture and thermal gradients in the liquid layer.

Analysis of these effects should be performed if experimental results

indicate that any of these arc important.
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ISO''1<OP I C TI'.NSORb

 A. I!U. = 3.,U.
j ij i'

where the prime denotes the representation in the rotated frame, and the
.th

a,. are the cosines of the angles between the ori ginal i � axis and the
lg

.t.hnew j � axis. The inverse transformation of eq.  A. I! is

u, = a..u'
i ij k  A. I aj

Applying eq.  A. la! to  A. I! gives

 A. 2!

Equation  A. 2! implies that

a..a. = 6.
ij ik jk,

where 6.k is the Kronecker delta.
gk

FurthermO1'e, a.,ak. = 6.k. Orle mayji ki jk'

write the coordinates of the rotated frame [from eq.  A.I!] as

x. = a..x,
l! 1

lie see that

Bx.

a.
Bx. ij

1 Bx.
1

3x., ij
3

From the inverse trans formation,

In deriving constitutive relations for media having i,sotropic

physical properties, it is necessary to develop expressions for isotropic

tensors of the second and fourth order. For convenience in computation

we restrict the development to Cartesian tensor notation.

Isotropy implies that the quantity in question has properties

invariant with respect to the orientation of the coordinate system. One

writes the representation for a vector  first order tensor! upon rotation

 change of orientation! as follows:



1.41

I<e introduce a tensor of the second order u, k by requiring it
Ik

to transform according to the following law

The condition of istropv for the second-order tensor is:

4!.. = 4!..
>j i3

 A. 4!

Say we write

c6..
j3 13

 A.5!

where c is a scalar.

The transformed form is

4!., = c6..
13

If Q.. is isotropic, eq.  A.4! must hold, or
13

ij ij
 A. 6!

from eqs.  A,5!. We write, since 6.. is evidently a second-order tensor
ij

.a,6 = a .a . = 6..
ij hi lj kl ki kj ij

This result shows eq.  A.6! is satisfied, so the representation

of eq.  A.5! is an isotropic tensor. An example of an isotropic second-

order tensor is the stress tensor for an inviscid fluid  eq. 2.47!:

a.. = -p'6..
ij 13

�.38!]. We have a relation of the form:

o.. =E..
ij ijmn mn.

In the rotated  primed! frame one has

 A.7!

ot Et Et
op opqr qr.

To show that E.. is a fourth-order tensor we write
1 3 mn

One requires isotropic fourth-order tensors in the constitutive

relations for linear solids having material isotropy [see eqs. �.25! and
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 A. 9»!
'J.. = a. 2. a

ij io jp op

 A ..Ih!
c.' = aqr mq 'nr mn

Substitutinp eq.  A.9b! into eq.  A.,"~l gives

o' = a a I'' c
op mq nr opq r mn

 A. 10!

If one multiplies both sides of cq.  A. IP! by a. a. onc has, from
10 1P

cil.  A.9a!

a.. = a. a. a a E'
i j io jp mq mr opqr mn

Ate sees from eqs.  A. 11! and  A. 7! that

 A. 11!

E.. = a. a. a a E'ijmn io 'jp mq nr opqr,  A 1'-!

is the transformation for a fourth-order tensor, as can be seen from a

i,eneralization of the transformation of eq.  A.la!. The condition of
material isotropy tor the relations l'A.7! anil  A,8! is, from eq.  A.12!

l:.. = I:!. = a, a. n a l:.''i jmn i jm» ' io jp ' mil ' nr 'opqr  A. 1.~!

l:q»ation  A.15! is sat isfie.l for three products of kronecker delta

funct.i ons:

ij mn,

6.
1m jn,

d. A'.
in jm,

E..
ijmn

 A. 14!

as can be verified by direct substitution. ! f one has the following

symmetries:

E.. = L.. = E,. = I-:'i jmn j imn i jnm mn i j,  A

the most general isotropic fourth-order tensor can bc constructed from a

linear combination of the three factors in eq.  A.14!  See Refs, [18]

and tie]!:



L,, = XS.. S + lr�. S. + S. S. !
i jmn ij mn im jn in jm

 A. Lb!

Lquation  A.16! is the form used for constitutive relations in eqs.  ',2S!

and �.38! . The syrrrnetries in eq.  A.15! arise due the symmetry of the

stress and strain  or strain-rate! tensors and due to thermodynamic con-

siderations.
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THE ROOTS OF THE FRE !UEiVCY EQUATION:

FINITE DEPT!I OF LIQUID LAYER

We wish to find solutions to eq. �.11!, the frequency equa-

tion for the finite liquid layer over the homogeneous viscoelastic

halfspace, Solutions represent poles of the integrand in eq. �.14!,

which in turn are associated with residue terms representing modal

behavior in the acoustic response. We write the frequency equation as

2 2 ' 2 2 2 2 2 l- 2 2 ', 2 1~
D z ! = m z -1! '[2z -5 ! � 4 z -u !' z -3 ! 'z ]cosh[k h  z -1! ] +

0 0

2+g  z -m ! 'sinh[k h  z -1! '].

As mentioned in Chapter V, the roots of thc frequency equation

for the liquid over an elastic solid were investigated by Schermann[42].

His study applies to eq. �.11! if o and 0 are taken as positive real

numbers. Viscoelasticity of the Voigt type makes u and l3 complex num-

bers appearing in the fourth quadrant. This is evident if one recalls

the definition of a and 5

k
3

Q
k

and
ks

8 =�
k0 �. 7!

where k and k are given in eqs. �."4! and �.25! and k is real and8 ' ' e

positive.

The damping is relatively small, as mentioned in Chapter I. This

implies that we may write u and 5 in the form:

D z,! = 0,
2

�. 11!

.th
where + 3i is the i solution in the complex  z! plane and from eq. �.8!:





oD, 9i!I
a8

0

rz

 lh. 6!

0' 0, 0

� 7!x < 1

for two liqui<is. The same result can be shown to apply for the solid

bottom if the shear wave velocity is small. Ne note from Table 1 that

or
p7 0

We rewrite eq.  ~, 1 1! for a real root z = x as follows:0

2 2
m x -1! x 2 2 4i 2 2'~ 2 2'-[2  � ! -1] - �  x-<<!  8-x!'

P0 4 0 0
0 x -o,�! '

1~
-tanh [k h  x -1! ]

o 0

For 5 very large, eq.  8.8! reduces to

One sees from this result that the sol»t ion z, to the»ndamped

e<buation is the zeroth order part of the solution tor the damped

equation. The first order part of the solution  z'! is given in

terms of the derivatives of the undami!ed equation.

Since a first-order solution to eq.  ~.!l! is also a solution

to eq.  B.5! for the undamped case, Sci!ermann's results are applicable.

We recall that Schermann found a finite number of real roots. i.rom

the discussion in Fwing, et al. [7], the real roots were found to lie

in thc region



m x -1! tnnh [k h  x -l! 'j

 x 0!
 B, 0!

the frequency equation for two liquids [7] . This can have real solu-

tions, x, only if eq.  B.7! holds. We rewrite eq.  B.9! as follows:

2
m�-x ! tan [k h �-x !' !
 x -ct !'

 B. 9a!

where all the square roots are positive real numbers. We note that

solutions to equation  B.9a! are frequency-dependent due to the k0h0

factors on the right-hand side. One may graphically determine the

solutions to eq.  8.9a! as was done in reference [7] in Figure 4-4.

The result, is that '3 non-trivial real roots appear in the region

given in eq.  B.7!, where iN is the largest integer satisfying the

inequality

  ! v < kli �-ix!'2N+ 1

Introducing the wavelcngtli Xp = 21'/k into eq.  B.10! gives:
0

Nc see that for high frequencies corresponding to large values of the

ratio hp/Ap , one has many solutions .'i.

One sees from the form of eq.  B.B! that. tlie number of poles, iV,

is the same for the liquid over the elastic solid to the first order

for 8 >> 1. This can be shown formal ly by expanding about the two

liquid case  8p = 0!. Tlute zeroth order solution will l!e given by



eq.  B.9a!. Thc effect of thc small rigidit> shifts each pole slightly

in the complex plane.

As a result, we sce that solutions to eq, �.11! for small

damping and 9p small lie close to the real axis and slightly in the

fourth quadrant. We write eq.  8.3! in the form

 R.ll!Z = Xp � 1EZ

where ap < xp

31E J F < < 1

The number N of roots is given by eq.  l3. 10!.

These results have been verified for a typical example oF marine

sediments. Complex roots of eq, �,11! were determined numeri cally

using ilamilton's data for fine sand  sec Table 1!. A small amount of

damping was assumed for ct, and R. The frequency was taken as 3500 iiz

and the water depth hp was 30 meters, 0ther parameters were:

cp = 1501 m/sec

c = 1742 m/sec
Q

c~ = 382 m/sec
8

pp = 1.025 g/cm
3

p = 1.98 g/cm
1

The number li of roots found was 70, a value that agreed with cq.

 ll.10! . The complex roots were found to lie very close to the real axis,

and the real parts fall in the range gi vcn hy cq.  R.7!. These results

verified the observations based on the perturbational argument given,
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'I'III-; ROOTS OF 'I1II' FI?L'qLILNCY I.QUA'I'IONr

I'NF IVI'IF, DFPTII OF l.IJUI D LRYI'.R

Ke wish to solve eq. �.8!:

D z! =0
2

where, from eq. �.6!:

22 2 'y 2z 2 4z 2 2 r 7 ~ r 1~D  z ! = m z -I! [  � -l!" - �  z - x ! ' z"-8"! '! +  z -cr !
1 $2p4

1"e apply the small damping assumption to eq. �.8! and use a perturba.-

tion as was done in Appendix B. On applying cqs.  B. 1!,  B.2! and

 8.3! and expandirrg Dl about the undamped state, we obtain

3D ;D 3D
z'+ g'+ P' +

3z acr
 C-1!

zo !oro >P>0

Setting each oIdor of g to zero in eq.  C-1 gives

D  z,c ,20! =  !  C-2!

a, aD,
 X +

 C-5!

3D

3z z,m�g

a < I<
0 0

A real root x of eq.  C-2! exists, «I>ere
p

As mentioned in Chapter VI, solutions to eq.  C- !  the undamped equation!

were obtained by Stricl. ar>d Ginsbarg [S2]. For marine sediments, wlrere



x >gO
p

  '. -4!

One may write the complex root z to the first order as
P

z = x � lcz
p p

K-~!

where z' is given by eq.  C-3!, Thc real part x is obtained from the
r

curves in Reference [52 ].
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